ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14509
  4. Cited By
PAC-Bayes Information Bottleneck

PAC-Bayes Information Bottleneck

29 September 2021
Zifeng Wang
Shao-Lun Huang
E. Kuruoglu
Jimeng Sun
Xi Chen
Yefeng Zheng
ArXivPDFHTML

Papers citing "PAC-Bayes Information Bottleneck"

13 / 13 papers shown
Title
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
95
0
0
08 Nov 2023
An Information Theory-inspired Strategy for Automatic Network Pruning
An Information Theory-inspired Strategy for Automatic Network Pruning
Xiawu Zheng
Yuexiao Ma
Teng Xi
Gang Zhang
Errui Ding
Yuchao Li
Jie Chen
Yonghong Tian
Rongrong Ji
163
13
0
19 Aug 2021
Disentangled Information Bottleneck
Disentangled Information Bottleneck
Ziqi Pan
Li Niu
Jianfu Zhang
Liqing Zhang
53
37
0
14 Dec 2020
Less Is Better: Unweighted Data Subsampling via Influence Function
Less Is Better: Unweighted Data Subsampling via Influence Function
Zifeng Wang
Hong Zhu
Zhenhua Dong
Xiuqiang He
Shao-Lun Huang
TDI
68
53
0
03 Dec 2019
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
48
22
0
20 Nov 2019
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent
  Estimates
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
153
152
0
06 Nov 2019
Specializing Word Embeddings (for Parsing) by Information Bottleneck
Specializing Word Embeddings (for Parsing) by Information Bottleneck
Xiang Lisa Li
Jason Eisner
55
67
0
01 Oct 2019
Compressing Neural Networks using the Variational Information Bottleneck
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
49
181
0
28 Feb 2018
Information-theoretic analysis of generalization capability of learning
  algorithms
Information-theoretic analysis of generalization capability of learning algorithms
Aolin Xu
Maxim Raginsky
157
445
0
22 May 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
169
2,878
0
14 Mar 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
179
1,582
0
09 Mar 2015
In Search of the Real Inductive Bias: On the Role of Implicit
  Regularization in Deep Learning
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
88
657
0
20 Dec 2014
1