Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.12298
Cited By
Opacus: User-Friendly Differential Privacy Library in PyTorch
25 September 2021
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
Mani Malek
John Nguyen
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Opacus: User-Friendly Differential Privacy Library in PyTorch"
50 / 245 papers shown
Title
Chameleon: Increasing Label-Only Membership Leakage with Adaptive Poisoning
Harsh Chaudhari
Giorgio Severi
Alina Oprea
Jonathan R. Ullman
31
5
0
05 Oct 2023
Practical Membership Inference Attacks Against Large-Scale Multi-Modal Models: A Pilot Study
Myeongseob Ko
Ming Jin
Chenguang Wang
Ruoxi Jia
33
27
0
29 Sep 2023
Federated Learning with Differential Privacy for End-to-End Speech Recognition
Martin Pelikan
Sheikh Shams Azam
Vitaly Feldman
Jan Honza Silovsky
Kunal Talwar
Tatiana Likhomanenko
42
8
0
29 Sep 2023
Evaluating the Usability of Differential Privacy Tools with Data Practitioners
Ivoline C. Ngong
Brad Stenger
Joseph P. Near
Yuanyuan Feng
23
12
0
24 Sep 2023
Communication Efficient Private Federated Learning Using Dithering
Burak Hasircioglu
Deniz Gunduz
FedML
45
7
0
14 Sep 2023
DP-Forward: Fine-tuning and Inference on Language Models with Differential Privacy in Forward Pass
Minxin Du
Xiang Yue
Sherman S. M. Chow
Tianhao Wang
Chenyu Huang
Huan Sun
SILM
32
58
0
13 Sep 2023
Privacy-Engineered Value Decomposition Networks for Cooperative Multi-Agent Reinforcement Learning
Parham Gohari
Matthew T. Hale
Ufuk Topcu
OffRL
30
1
0
13 Sep 2023
SABLE: Secure And Byzantine robust LEarning
Antoine Choffrut
R. Guerraoui
Rafael Pinot
Renaud Sirdey
John Stephan
Martin Zuber
AAML
31
2
0
11 Sep 2023
Privacy Preserving Federated Learning with Convolutional Variational Bottlenecks
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
AAML
23
5
0
08 Sep 2023
Byzantine-Robust Federated Learning with Variance Reduction and Differential Privacy
Zikai Zhang
Rui Hu
38
11
0
07 Sep 2023
The Relative Gaussian Mechanism and its Application to Private Gradient Descent
Hadrien Hendrikx
Paul Mangold
A. Bellet
33
1
0
29 Aug 2023
ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Fumiyuki Kato
Li Xiong
Shun Takagi
Yang Cao
Masatoshi Yoshikawa
FedML
17
3
0
23 Aug 2023
A novel analysis of utility in privacy pipelines, using Kronecker products and quantitative information flow
Mário S. Alvim
Natasha Fernandes
Annabelle McIver
Carroll Morgan
Gabriel H. Nunes
19
5
0
22 Aug 2023
Differential Privacy, Linguistic Fairness, and Training Data Influence: Impossibility and Possibility Theorems for Multilingual Language Models
Phillip Rust
Anders Søgaard
27
3
0
17 Aug 2023
Enhancing the Antidote: Improved Pointwise Certifications against Poisoning Attacks
Shijie Liu
Andrew C. Cullen
Paul Montague
S. Erfani
Benjamin I. P. Rubinstein
AAML
23
3
0
15 Aug 2023
Large-Scale Public Data Improves Differentially Private Image Generation Quality
Ruihan Wu
Chuan Guo
Kamalika Chaudhuri
21
2
0
04 Aug 2023
Deep Generative Models, Synthetic Tabular Data, and Differential Privacy: An Overview and Synthesis
Conor Hassan
Roberto Salomone
Kerrie Mengersen
23
6
0
28 Jul 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
38
13
0
27 Jul 2023
Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and Filtering
Ce Feng
Nuo Xu
Wujie Wen
Parv Venkitasubramaniam
Caiwen Ding
12
4
0
25 Jul 2023
Client-Level Differential Privacy via Adaptive Intermediary in Federated Medical Imaging
Meirui Jiang
Yuan Zhong
Anjie Le
Xiaoxiao Li
Qianming Dou
FedML
44
5
0
24 Jul 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
Differentially Private Decoupled Graph Convolutions for Multigranular Topology Protection
Eli Chien
Wei-Ning Chen
Chao Pan
Pan Li
Ayfer Özgür
O. Milenkovic
36
12
0
12 Jul 2023
Differentially Private Video Activity Recognition
Zelun Luo
Yuliang Zou
Yijin Yang
Zane Durante
De-An Huang
Zhiding Yu
Chaowei Xiao
L. Fei-Fei
Anima Anandkumar
PICV
35
3
0
27 Jun 2023
Synthetic data shuffling accelerates the convergence of federated learning under data heterogeneity
Bo-wen Li
Yasin Esfandiari
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
27
3
0
23 Jun 2023
ViP: A Differentially Private Foundation Model for Computer Vision
Yaodong Yu
Maziar Sanjabi
Y. Ma
Kamalika Chaudhuri
Chuan Guo
16
12
0
15 Jun 2023
Augment then Smooth: Reconciling Differential Privacy with Certified Robustness
Jiapeng Wu
Atiyeh Ashari Ghomi
David Glukhov
Jesse C. Cresswell
Franziska Boenisch
Nicolas Papernot
AAML
37
1
0
14 Jun 2023
Gaussian Membership Inference Privacy
Tobias Leemann
Martin Pawelczyk
Gjergji Kasneci
22
15
0
12 Jun 2023
Preserving privacy in domain transfer of medical AI models comes at no performance costs: The integral role of differential privacy
Soroosh Tayebi Arasteh
Mahshad Lotfinia
T. Nolte
Marwin Saehn
P. Isfort
Christiane Kuhl
S. Nebelung
Georgios Kaissis
Daniel Truhn
MedIm
20
8
0
10 Jun 2023
Differentially Private Sharpness-Aware Training
Jinseong Park
Hoki Kim
Yujin Choi
Jaewook Lee
27
8
0
09 Jun 2023
Investigating the Effect of Misalignment on Membership Privacy in the White-box Setting
Ana-Maria Cretu
Daniel Jones
Yves-Alexandre de Montjoye
Shruti Tople
AAML
24
4
0
08 Jun 2023
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
Privately generating tabular data using language models
Alexandre Sablayrolles
Yue Wang
Brian Karrer
LMTD
16
4
0
07 Jun 2023
Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks
Emilie Grégoire
M. H. Chaudhary
Sam Verboven
24
1
0
07 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
46
11
0
06 Jun 2023
Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private Tuning
Umang Gupta
Aram Galstyan
Greg Ver Steeg
6
2
0
30 May 2023
Training Private Models That Know What They Don't Know
Stephan Rabanser
Anvith Thudi
Abhradeep Thakurta
Krishnamurthy Dvijotham
Nicolas Papernot
24
7
0
28 May 2023
DPFormer: Learning Differentially Private Transformer on Long-Tailed Data
Youlong Ding
Xueyang Wu
Hongya Wang
Weike Pan
31
0
0
28 May 2023
DP-SGD Without Clipping: The Lipschitz Neural Network Way
Louis Bethune
Thomas Massena
Thibaut Boissin
Yannick Prudent
Corentin Friedrich
Franck Mamalet
A. Bellet
M. Serrurier
David Vigouroux
34
9
0
25 May 2023
Differentially Private Latent Diffusion Models
Saiyue Lyu
Michael F. Liu
Margarita Vinaroz
Mijung Park
26
24
0
25 May 2023
Personalized DP-SGD using Sampling Mechanisms
Geon Heo
Junseok Seo
Steven Euijong Whang
22
2
0
24 May 2023
Trade-Offs Between Fairness and Privacy in Language Modeling
Cleo Matzken
Steffen Eger
Ivan Habernal
SILM
41
6
0
24 May 2023
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Zinan Lin
Sivakanth Gopi
Janardhan Kulkarni
Harsha Nori
Sergey Yekhanin
41
36
0
24 May 2023
Privacy Loss of Noisy Stochastic Gradient Descent Might Converge Even for Non-Convex Losses
S. Asoodeh
Mario Díaz
20
6
0
17 May 2023
Privacy-Preserving Taxi-Demand Prediction Using Federated Learning
Yumeki Goto
Tomoya Matsumoto
Hamada Rizk
Naoto Yanai
Hirozumi Yamaguchi
30
6
0
14 May 2023
MetaMorphosis: Task-oriented Privacy Cognizant Feature Generation for Multi-task Learning
Md. Adnan Arefeen
Zhouyu Li
M. Y. S. Uddin
Anupam Das
27
0
0
13 May 2023
DPMLBench: Holistic Evaluation of Differentially Private Machine Learning
Chengkun Wei
Ming-Hui Zhao
Zhikun Zhang
Min Chen
Wenlong Meng
Bodong Liu
Yuan-shuo Fan
Wenzhi Chen
34
11
0
10 May 2023
Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
FedML
28
2
0
04 May 2023
Efficient Federated Learning with Enhanced Privacy via Lottery Ticket Pruning in Edge Computing
Yi Shi
Kang Wei
Li Shen
Jun Li
Xueqian Wang
Bo Yuan
Song Guo
41
5
0
02 May 2023
Towards the Flatter Landscape and Better Generalization in Federated Learning under Client-level Differential Privacy
Yi Shi
Kang Wei
Li Shen
Yingqi Liu
Xueqian Wang
Bo Yuan
Dacheng Tao
FedML
35
2
0
01 May 2023
The Disharmony between BN and ReLU Causes Gradient Explosion, but is Offset by the Correlation between Activations
Inyoung Paik
Jaesik Choi
18
0
0
23 Apr 2023
Previous
1
2
3
4
5
Next