Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.12298
Cited By
Opacus: User-Friendly Differential Privacy Library in PyTorch
25 September 2021
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
Mani Malek
John Nguyen
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Opacus: User-Friendly Differential Privacy Library in PyTorch"
50 / 245 papers shown
Title
Seeing the Forest through the Trees: Data Leakage from Partial Transformer Gradients
Weijun Li
Qiongkai Xu
Mark Dras
PILM
32
1
0
03 Jun 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
36
5
0
28 May 2024
Laboratory-Scale AI: Open-Weight Models are Competitive with ChatGPT Even in Low-Resource Settings
Robert Wolfe
Isaac Slaughter
Bin Han
Bingbing Wen
Yiwei Yang
...
Bernease Herman
E. Brown
Zening Qu
Nicholas Weber
Bill Howe
40
4
0
27 May 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
53
9
0
27 May 2024
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
Tudor Cebere
A. Bellet
Nicolas Papernot
30
9
0
23 May 2024
Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data
Haoran Li
Xinyuan Zhao
Dadi Guo
Hanlin Gu
Ziqian Zeng
Yuxing Han
Yangqiu Song
Lixin Fan
Qiang Yang
23
1
0
23 May 2024
Nearly Tight Black-Box Auditing of Differentially Private Machine Learning
Meenatchi Sundaram Muthu Selva Annamalai
Emiliano De Cristofaro
44
11
0
23 May 2024
Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models
Matías Mendieta
Guangyu Sun
Cheng Chen
23
5
0
02 May 2024
Federated Learning and Differential Privacy Techniques on Multi-hospital Population-scale Electrocardiogram Data
Vikhyat Agrawal
S. Kalmady
Venkataseetharam Manoj Malipeddi
Manisimha Manthena
Weijie Sun
Saiful Islam
Abram Hindle
Padma Kaul
Russell Greiner
FedML
23
5
0
26 Apr 2024
LazyDP: Co-Designing Algorithm-Software for Scalable Training of Differentially Private Recommendation Models
Juntaek Lim
Youngeun Kwon
Ranggi Hwang
Kiwan Maeng
Edward Suh
Minsoo Rhu
SyDa
31
0
0
12 Apr 2024
pfl-research: simulation framework for accelerating research in Private Federated Learning
Filip Granqvist
Congzheng Song
Áine Cahill
Rogier van Dalen
Martin Pelikan
Yi Sheng Chan
Xiaojun Feng
Natarajan Krishnaswami
Vojta Jina
Mona Chitnis
FedML
39
6
0
09 Apr 2024
Privacy Backdoors: Stealing Data with Corrupted Pretrained Models
Shanglun Feng
Florian Tramèr
SILM
38
14
0
30 Mar 2024
How Private are DP-SGD Implementations?
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
43
12
0
26 Mar 2024
TablePuppet: A Generic Framework for Relational Federated Learning
Lijie Xu
Chulin Xie
Yiran Guo
Gustavo Alonso
Bo-wen Li
Guoliang Li
Wei Wang
Wentao Wu
Ce Zhang
FedML
36
0
0
23 Mar 2024
Differentially Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
28
6
0
22 Mar 2024
DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
Jonathan Lebensold
Maziar Sanjabi
Pietro Astolfi
Adriana Romero Soriano
Kamalika Chaudhuri
Mike Rabbat
Chuan Guo
DiffM
31
4
0
21 Mar 2024
Improving LoRA in Privacy-preserving Federated Learning
Youbang Sun
Zitao Li
Yaliang Li
Bolin Ding
29
57
0
18 Mar 2024
Sentinel-Guided Zero-Shot Learning: A Collaborative Paradigm without Real Data Exposure
Fan Wan
Xingyu Miao
Haoran Duan
Jingjing Deng
Rui Gao
Yang Long
VLM
39
4
0
14 Mar 2024
Quantifying and Mitigating Privacy Risks for Tabular Generative Models
Chaoyi Zhu
Jiayi Tang
Hans Brouwer
Juan F. Pérez
Marten van Dijk
Lydia Y. Chen
60
5
0
12 Mar 2024
Inverse-Free Fast Natural Gradient Descent Method for Deep Learning
Xinwei Ou
Ce Zhu
Xiaolin Huang
Yipeng Liu
ODL
42
0
0
06 Mar 2024
Differentially Private Representation Learning via Image Captioning
Tom Sander
Yaodong Yu
Maziar Sanjabi
Alain Durmus
Yi Ma
Kamalika Chaudhuri
Chuan Guo
71
3
0
04 Mar 2024
Defending Against Data Reconstruction Attacks in Federated Learning: An Information Theory Approach
Qi Tan
Qi Li
Yi Zhao
Zhuotao Liu
Xiaobing Guo
Ke Xu
FedML
39
2
0
02 Mar 2024
Differentially Private Knowledge Distillation via Synthetic Text Generation
James Flemings
Murali Annavaram
SyDa
42
11
0
01 Mar 2024
On the Convergence of Differentially-Private Fine-tuning: To Linearly Probe or to Fully Fine-tune?
Shuqi Ke
Charlie Hou
Giulia Fanti
Sewoong Oh
38
4
0
29 Feb 2024
Pre-training Differentially Private Models with Limited Public Data
Zhiqi Bu
Xinwei Zhang
Mingyi Hong
Sheng Zha
George Karypis
79
3
0
28 Feb 2024
Unveiling Privacy, Memorization, and Input Curvature Links
Deepak Ravikumar
Efstathia Soufleri
Abolfazl Hashemi
Kaushik Roy
54
5
0
28 Feb 2024
Differentially Private Fair Binary Classifications
Hrad Ghoukasian
S. Asoodeh
FaML
34
1
0
23 Feb 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew J. Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
38
2
0
22 Feb 2024
PANORAMIA: Privacy Auditing of Machine Learning Models without Retraining
Mishaal Kazmi
H. Lautraite
Alireza Akbari
Mauricio Soroco
Qiaoyue Tang
Tao Wang
Sébastien Gambs
Mathias Lécuyer
37
8
0
12 Feb 2024
Clients Collaborate: Flexible Differentially Private Federated Learning with Guaranteed Improvement of Utility-Privacy Trade-off
Yuecheng Li
Lele Fu
Tong Wang
Jian Lou
Bin Chen
Lei Yang
Zibin Zheng
Zibin Zheng
Chuan Chen
FedML
70
4
0
10 Feb 2024
Privacy Profiles for Private Selection
Antti Koskela
Rachel Redberg
Yu-Xiang Wang
32
1
0
09 Feb 2024
De-amplifying Bias from Differential Privacy in Language Model Fine-tuning
Sanjari Srivastava
Piotr (Peter) Mardziel
Zhikhun Zhang
Archana Ahlawat
Anupam Datta
John C. Mitchell
37
1
0
07 Feb 2024
Subsampling is not Magic: Why Large Batch Sizes Work for Differentially Private Stochastic Optimisation
Ossi Raisa
Joonas Jälkö
Antti Honkela
30
6
0
06 Feb 2024
Decentralised, Collaborative, and Privacy-preserving Machine Learning for Multi-Hospital Data
Cong Fang
Adam Dziedzic
Lin Zhang
Laura Oliva
A. Verma
Fahad Razak
Nicolas Papernot
Bo Wang
OOD
17
11
0
31 Jan 2024
Cross-silo Federated Learning with Record-level Personalized Differential Privacy
Junxu Liu
Jian Lou
Li Xiong
Jinfei Liu
Xiaofeng Meng
28
5
0
29 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
Facebook Report on Privacy of fNIRS data
Md. Imran Hossen
Sai Venkatesh Chilukoti
Liqun Shan
Vijay Srinivas Tida
X. Hei
25
0
0
01 Jan 2024
AIJack: Let's Hijack AI! Security and Privacy Risk Simulator for Machine Learning
Hideaki Takahashi
SILM
30
2
0
29 Dec 2023
On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift
Pratiksha Thaker
Amrith Rajagopal Setlur
Zhiwei Steven Wu
Virginia Smith
39
2
0
24 Dec 2023
An Empirical Study of Efficiency and Privacy of Federated Learning Algorithms
Sofia Zahri
Hajar Bennouri
A. Abdelmoniem
FedML
11
1
0
24 Dec 2023
DP-AdamBC: Your DP-Adam Is Actually DP-SGD (Unless You Apply Bias Correction)
Qiaoyue Tang
Frederick Shpilevskiy
Mathias Lécuyer
40
14
0
21 Dec 2023
Federated learning with differential privacy and an untrusted aggregator
Kunlong Liu
Trinabh Gupta
42
0
0
17 Dec 2023
FedECA: A Federated External Control Arm Method for Causal Inference with Time-To-Event Data in Distributed Settings
Jean Ogier du Terrail
Quentin Klopfenstein
Honghao Li
Imke Mayer
Nicolas Loiseau
Mohammad Hallal
Félix Balazard
M. Andreux
18
2
0
28 Nov 2023
Automated discovery of trade-off between utility, privacy and fairness in machine learning models
Bogdan Ficiu
Neil D. Lawrence
Andrei Paleyes
29
1
0
27 Nov 2023
DP-NMT: Scalable Differentially-Private Machine Translation
Timour Igamberdiev
Doan Nam Long Vu
Felix Künnecke
Zhuo Yu
Jannik Holmer
Ivan Habernal
31
7
0
24 Nov 2023
Zero redundancy distributed learning with differential privacy
Zhiqi Bu
Justin Chiu
Ruixuan Liu
Sheng Zha
George Karypis
45
8
0
20 Nov 2023
Inference and Interference: The Role of Clipping, Pruning and Loss Landscapes in Differentially Private Stochastic Gradient Descent
Lauren Watson
Eric Gan
Mohan Dantam
Baharan Mirzasoleiman
Rik Sarkar
23
1
0
12 Nov 2023
Unified Enhancement of Privacy Bounds for Mixture Mechanisms via
f
f
f
-Differential Privacy
Chendi Wang
Buxin Su
Jiayuan Ye
Reza Shokri
Weijie J. Su
FedML
18
10
0
30 Oct 2023
On the accuracy and efficiency of group-wise clipping in differentially private optimization
Zhiqi Bu
Ruixuan Liu
Yu-Xiang Wang
Sheng Zha
George Karypis
VLM
32
4
0
30 Oct 2023
DP-SGD with weight clipping
Antoine Barczewski
Jan Ramon
11
1
0
27 Oct 2023
Previous
1
2
3
4
5
Next