Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.11429
Cited By
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
23 September 2021
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data"
26 / 26 papers shown
Title
Conformal Prediction Sets Can Cause Disparate Impact
Jesse C. Cresswell
Bhargava Kumar
Yi Sui
Mouloud Belbahri
FaML
306
1
0
17 Feb 2025
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
58
0
0
03 Oct 2024
A Fairness Analysis on Private Aggregation of Teacher Ensembles
Cuong Tran
M. H. Dinh
Kyle Beiter
Ferdinando Fioretto
45
12
0
17 Sep 2021
Winning the NIST Contest: A scalable and general approach to differentially private synthetic data
Ryan McKenna
G. Miklau
Daniel Sheldon
SyDa
26
120
0
11 Aug 2021
An Analysis of the Deployment of Models Trained on Private Tabular Synthetic Data: Unexpected Surprises
Mayana Pereira
Meghana Kshirsagar
Soumendu Sundar Mukherjee
Rahul Dodhia
J. L. Ferres
44
9
0
15 Jun 2021
ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models
Yugeng Liu
Rui Wen
Xinlei He
A. Salem
Zhikun Zhang
Michael Backes
Emiliano De Cristofaro
Mario Fritz
Yang Zhang
AAML
44
131
0
04 Feb 2021
PrivSyn: Differentially Private Data Synthesis
Zhikun Zhang
Tianhao Wang
Ninghui Li
Jean Honorio
Michael Backes
Shibo He
Jiming Chen
Yang Zhang
SyDa
28
64
0
30 Dec 2020
Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings
Vinith Suriyakumar
Nicolas Papernot
Anna Goldenberg
Marzyeh Ghassemi
OOD
45
67
0
13 Oct 2020
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach
Cuong Tran
Ferdinando Fioretto
Pascal Van Hentenryck
FedML
46
78
0
26 Sep 2020
Neither Private Nor Fair: Impact of Data Imbalance on Utility and Fairness in Differential Privacy
Tom Farrand
Fatemehsadat Mireshghallah
Sahib Singh
Andrew Trask
FedML
35
93
0
10 Sep 2020
Differentially Private Synthetic Mixed-Type Data Generation For Unsupervised Learning
U. Tantipongpipat
Chris Waites
Digvijay Boob
Amaresh Ankit Siva
Rachel Cummings
SyDa
50
31
0
06 Dec 2019
Diffprivlib: The IBM Differential Privacy Library
N. Holohan
S. Braghin
Pól Mac Aonghusa
Killian Levacher
SyDa
47
129
0
04 Jul 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
113
489
0
12 Jun 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
81
474
0
28 May 2019
Detecting Overfitting of Deep Generative Networks via Latent Recovery
Ryan Webster
Julien Rabin
Loïc Simon
F. Jurie
GAN
33
99
0
09 Jan 2019
Differentially Private Generative Adversarial Networks for Time Series, Continuous, and Discrete Open Data
Lorenzo Frigerio
Anderson Santana de Oliveira
L. Gomez
Patrick Duverger
SyDa
AI4TS
48
110
0
08 Jan 2019
Differentially Private Fair Learning
Matthew Jagielski
Michael Kearns
Jieming Mao
Alina Oprea
Aaron Roth
Saeed Sharifi-Malvajerdi
Jonathan R. Ullman
FaML
FedML
80
149
0
06 Dec 2018
Scalable Private Learning with PATE
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
86
608
0
24 Feb 2018
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
D. Song
111
1,128
0
22 Feb 2018
Differentially Private Generative Adversarial Network
Liyang Xie
Kaixiang Lin
Shu Wang
Fei Wang
Jiayu Zhou
SyDa
66
495
0
19 Feb 2018
Differentially Private Mixture of Generative Neural Networks
G. Ács
Luca Melis
C. Castelluccia
Emiliano De Cristofaro
SyDa
36
121
0
13 Sep 2017
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
203
4,075
0
18 Oct 2016
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
55
1,012
0
18 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
124
4,276
0
07 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
170
6,069
0
01 Jul 2016
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
93
1,482
0
01 Dec 2009
1