ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.01888
79
1

Conformal Prediction Sets Can Cause Disparate Impact

17 February 2025
Jesse C. Cresswell
Bhargava Kumar
Yi Sui
Mouloud Belbahri
    FaML
ArXivPDFHTML
Abstract

Conformal prediction is a statistically rigorous method for quantifying uncertainty in models by having them output sets of predictions, with larger sets indicating more uncertainty. However, prediction sets are not inherently actionable; many applications require a single output to act on, not several. To overcome this limitation, prediction sets can be provided to a human who then makes an informed decision. In any such system it is crucial to ensure the fairness of outcomes across protected groups, and researchers have proposed that Equalized Coverage be used as the standard for fairness. By conducting experiments with human participants, we demonstrate that providing prediction sets can lead to disparate impact in decisions. Disquietingly, we find that providing sets that satisfy Equalized Coverage actually increases disparate impact compared to marginal coverage. Instead of equalizing coverage, we propose to equalize set sizes across groups which empirically leads to lower disparate impact.

View on arXiv
@article{cresswell2025_2410.01888,
  title={ Conformal Prediction Sets Can Cause Disparate Impact },
  author={ Jesse C. Cresswell and Bhargava Kumar and Yi Sui and Mouloud Belbahri },
  journal={arXiv preprint arXiv:2410.01888},
  year={ 2025 }
}
Comments on this paper