ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09074
  4. Cited By
Efficient Urban-scale Point Clouds Segmentation with BEV Projection

Efficient Urban-scale Point Clouds Segmentation with BEV Projection

19 September 2021
Zhenhong Zou
Yizhe Li
    3DPC
ArXivPDFHTML

Papers citing "Efficient Urban-scale Point Clouds Segmentation with BEV Projection"

9 / 9 papers shown
Title
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network
  Leveraging Correlated Feature Mining and Geometric-Aware Modelling
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
Kangcheng Liu
Zhi Gao
F. Lin
Ben M. Chen
3DPC
34
57
0
17 Dec 2020
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
  Benchmarks and Challenges
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges
Qingyong Hu
Bo Yang
Sheikh Khalid
W. Xiao
A. Trigoni
Andrew Markham
3DPC
26
162
0
07 Sep 2020
Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
  Understanding of Outdoor Scene
Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical Understanding of Outdoor Scene
Xinke Li
Chongshou Li
Zekun Tong
A. Lim
Junsong Yuan
Yuwei Wu
Jing Tang
Raymond Huang
3DPC
52
56
0
11 Aug 2020
LatticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices
LatticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices
R. Rosu
Peer Schütt
Jan Quenzel
Sven Behnke
3DPC
3DV
37
93
0
12 Dec 2019
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
Qingyong Hu
Bo Yang
Linhai Xie
Stefano Rosa
Yulan Guo
Zhihua Wang
A. Trigoni
Andrew Markham
3DPC
63
1,480
0
25 Nov 2019
KPConv: Flexible and Deformable Convolution for Point Clouds
KPConv: Flexible and Deformable Convolution for Point Clouds
Hugues Thomas
C. Qi
Jean-Emmanuel Deschaud
B. Marcotegui
F. Goulette
Leonidas Guibas
3DPC
124
2,518
0
18 Apr 2019
Tangent Convolutions for Dense Prediction in 3D
Tangent Convolutions for Dense Prediction in 3D
Maxim Tatarchenko
Jaesik Park
V. Koltun
Qian-Yi Zhou
3DV
3DPC
MDE
53
542
0
06 Jul 2018
SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time
  Road-Object Segmentation from 3D LiDAR Point Cloud
SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud
Bichen Wu
Alvin Wan
Xiangyu Yue
Kurt Keutzer
3DPC
62
800
0
19 Oct 2017
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
Angela Dai
Angel X. Chang
Manolis Savva
Maciej Halber
Thomas Funkhouser
Matthias Nießner
3DPC
3DV
174
4,001
0
14 Feb 2017
1