ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07143
  4. Cited By
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
  Hermite-Spline CNNs

Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs

15 September 2021
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
    AI4CE
ArXivPDFHTML

Papers citing "Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs"

9 / 9 papers shown
Title
DeepLag: Discovering Deep Lagrangian Dynamics for Intuitive Fluid
  Prediction
DeepLag: Discovering Deep Lagrangian Dynamics for Intuitive Fluid Prediction
Qilong Ma
Haixu Wu
Lanxiang Xing
Jianmin Wang
Mingsheng Long
AI4CE
26
0
0
04 Feb 2024
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for
  Machine Learning and Process-based Hydrology
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
20
9
0
08 Oct 2023
Challenges and opportunities for machine learning in multiscale
  computational modeling
Challenges and opportunities for machine learning in multiscale computational modeling
Phong C. H. Nguyen
Joseph B. Choi
H. Udaykumar
Stephen Seung-Yeob Baek
AI4CE
22
8
0
22 Mar 2023
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
  Spatial-temporal Decomposition
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Xinquan Huang
Wenlei Shi
Qi Meng
Yue Wang
Xiaotian Gao
Jia Zhang
Tie-Yan Liu
AI4CE
21
8
0
20 Feb 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
44
4
0
10 Feb 2023
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
  Scientific Computing
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
48
0
14 Nov 2022
Physics-constrained Unsupervised Learning of Partial Differential
  Equations using Meshes
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
M. Michelis
Robert K. Katzschmann
AI4CE
27
1
0
30 Mar 2022
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
18
76
0
20 Sep 2021
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
D. Fox
PINN
3DPC
AI4CE
172
161
0
15 Jun 2018
1