ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.06099
  4. Cited By
Uniform Generalization Bounds for Overparameterized Neural Networks
v1v2v3 (latest)

Uniform Generalization Bounds for Overparameterized Neural Networks

13 September 2021
Sattar Vakili
Michael Bromberg
Jezabel R. Garcia
Da-shan Shiu
A. Bernacchia
ArXiv (abs)PDFHTML

Papers citing "Uniform Generalization Bounds for Overparameterized Neural Networks"

29 / 29 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
298
30,150
0
01 Mar 2022
Open Problem: Tight Online Confidence Intervals for RKHS Elements
Open Problem: Tight Online Confidence Intervals for RKHS Elements
Sattar Vakili
John Scarlett
T. Javidi
61
21
0
28 Oct 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
80
55
0
20 Aug 2021
A Short Note on the Relationship of Information Gain and Eluder
  Dimension
A Short Note on the Relationship of Information Gain and Eluder Dimension
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
40
8
0
06 Jul 2021
Batched Neural Bandits
Batched Neural Bandits
Quanquan Gu
Amin Karbasi
Khashayar Khosravi
Vahab Mirrokni
Dongruo Zhou
BDLOffRL
51
25
0
25 Feb 2021
On the linearity of large non-linear models: when and why the tangent
  kernel is constant
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
116
143
0
02 Oct 2020
Neural Thompson Sampling
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
67
122
0
02 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
81
90
0
30 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
148
94
0
22 Sep 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
60
136
0
15 Sep 2020
Regularization Matters: A Nonparametric Perspective on Overparametrized
  Neural Network
Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
Tianyang Hu
Wei Cao
Cong Lin
Guang Cheng
118
52
0
06 Jul 2020
On the Similarity between the Laplace and Neural Tangent Kernels
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
123
95
0
03 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
69
56
0
30 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
88
123
0
17 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
165
2,571
0
17 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
877
42,379
0
28 May 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
  Networks
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
239
208
0
07 Feb 2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
86
229
0
05 Dec 2019
The Convergence Rate of Neural Networks for Learned Functions of
  Different Frequencies
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies
Ronen Basri
David Jacobs
Yoni Kasten
S. Kritchman
80
218
0
02 Jun 2019
Gaussian Process Optimization with Adaptive Sketching: Scalable and No
  Regret
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
GP
45
0
0
13 Mar 2019
On Lazy Training in Differentiable Programming
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
839
0
19 Dec 2018
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GPBDL
144
344
0
06 Jul 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
273
3,219
0
20 Jun 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
157
561
0
30 Apr 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
135
1,099
0
01 Nov 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
109
819
0
31 Mar 2017
Toward Deeper Understanding of Neural Networks: The Power of
  Initialization and a Dual View on Expressivity
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
168
345
0
18 Feb 2016
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
292
591
0
27 Feb 2015
Finite-Time Analysis of Kernelised Contextual Bandits
Finite-Time Analysis of Kernelised Contextual Bandits
Michal Valko
N. Korda
Rémi Munos
I. Flaounas
N. Cristianini
185
275
0
26 Sep 2013
1