ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.02413
  4. Cited By
A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation

A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation

6 September 2021
Richard Shaw
Carole H. Sudre
Sebastien Ourselin
M. Jorge Cardoso
H. Pemberton
    UQCV
ArXivPDFHTML

Papers citing "A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation"

25 / 25 papers shown
Title
Deep Generative Model-based Quality Control for Cardiac MRI Segmentation
Deep Generative Model-based Quality Control for Cardiac MRI Segmentation
Shuo Wang
G. Tarroni
C. Qin
Yuanhan Mo
Chengliang Dai
Chen Chen
Ben Glocker
Yike Guo
Daniel Rueckert
Wenjia Bai
MedIm
42
28
0
23 Jun 2020
MRQy: An Open-Source Tool for Quality Control of MR Imaging Data
MRQy: An Open-Source Tool for Quality Control of MR Imaging Data
A. Sadri
A. Janowczyk
Ren-jian Zou
R. Verma
Niha G. Beig
J. Antunes
A. Madabhushi
Pallavi Tiwari
S. Viswanath
20
50
0
10 Apr 2020
A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image
  Quality
A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image Quality
Richard Shaw
Carole H. Sudre
Sebastien Ourselin
M. Jorge Cardoso
UQCV
56
13
0
31 Jan 2020
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
95
1,298
0
05 Dec 2019
Self-training with Noisy Student improves ImageNet classification
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
268
2,384
0
11 Nov 2019
Dual Neural Network Architecture for Determining Epistemic and Aleatoric
  Uncertainties
Dual Neural Network Architecture for Determining Epistemic and Aleatoric Uncertainties
Augustin Prado
Ravinath Kausik
Lalitha Venkataramanan
45
4
0
10 Oct 2019
Let's agree to disagree: learning highly debatable multirater labelling
Let's agree to disagree: learning highly debatable multirater labelling
Carole H. Sudre
B. G. Anson
S. Ingala
C. Lane
Daniel Jimenez
...
Ryutaro Tanno
Lorna Smith
Sébastien Ourselin
H. Jäger
M. Jorge Cardoso
49
26
0
04 Sep 2019
Uncertainty Quantification in Deep Learning for Safer Neuroimage
  Enhancement
Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement
Ryutaro Tanno
Daniel E. Worrall
Enrico Kaden
Aurobrata Ghosh
Francesco Grussu
A. Bizzi
S. Sotiropoulos
A. Criminisi
Daniel C. Alexander
MedIm
DiffM
64
33
0
31 Jul 2019
As easy as 1, 2... 4? Uncertainty in counting tasks for medical imaging
As easy as 1, 2... 4? Uncertainty in counting tasks for medical imaging
Zach Eaton-Rosen
Thomas Varsavsky
Sebastien Ourselin
M. Jorge Cardoso
UQCV
51
12
0
25 Jul 2019
Supervised Uncertainty Quantification for Segmentation with Multiple
  Annotations
Supervised Uncertainty Quantification for Segmentation with Multiple Annotations
Shi Hu
Daniel E. Worrall
Stefan Knegt
Bastiaan S. Veeling
Henkjan Huisman
Max Welling
UQCV
34
95
0
03 Jul 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
602
4,766
0
13 May 2019
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation
  for Structure-wise Quality Control
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation for Structure-wise Quality Control
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
52
119
0
24 Nov 2018
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
UQCV
MedIm
OOD
134
591
0
19 Jul 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
107
114
0
02 Jul 2018
Uncertainty in multitask learning: joint representations for
  probabilistic MR-only radiotherapy planning
Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning
Felix J. S. Bragman
Ryutaro Tanno
Zach Eaton-Rosen
Wenqi Li
D. Hawkes
Sebastien Ourselin
Daniel C. Alexander
J. McClelland
M. Jorge Cardoso
UQCV
52
50
0
18 Jun 2018
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Simon A. A. Kohl
Bernardino Romera-Paredes
Clemens Meyer
J. Fauw
J. Ledsam
Klaus H. Maier-Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger
UQCV
SSeg
73
573
0
13 Jun 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
262
9,737
0
25 Oct 2017
NiftyNet: a deep-learning platform for medical imaging
NiftyNet: a deep-learning platform for medical imaging
Eli Gibson
Wenqi Li
Carole Sudre
Lucas Fidon
D. I. Shakir
...
Marc Modat
D. Barratt
Sébastien Ourselin
M. Jorge Cardoso
Tom Vercauteren
76
549
0
11 Sep 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
246
3,114
0
19 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
326
4,699
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
617
5,795
0
05 Dec 2016
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
306
19,610
0
21 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
602
9,286
0
06 Jun 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
300
19,580
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.3K
149,820
0
22 Dec 2014
1