ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00375
  4. Cited By
Analytic natural gradient updates for Cholesky factor in Gaussian
  variational approximation
v1v2v3v4v5v6v7v8v9 (latest)

Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation

1 September 2021
Linda S. L. Tan
ArXiv (abs)PDFHTML

Papers citing "Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation"

41 / 41 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
138
0
0
10 Feb 2025
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
60
63
0
26 Jan 2023
Tractable structured natural gradient descent using local
  parameterizations
Tractable structured natural gradient descent using local parameterizations
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
59
30
0
15 Feb 2021
A Simple Convergence Proof of Adam and Adagrad
A Simple Convergence Proof of Adam and Adagrad
Alexandre Défossez
Léon Bottou
Francis R. Bach
Nicolas Usunier
112
155
0
05 Mar 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
73
36
0
24 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
434
10,591
0
17 Feb 2020
Momentum Improves Normalized SGD
Momentum Improves Normalized SGD
Ashok Cutkosky
Harsh Mehta
ODL
71
125
0
09 Feb 2020
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
71
31
0
29 Oct 2019
Variational Bayes on Manifolds
Variational Bayes on Manifolds
Minh-Ngoc Tran
D. Nguyen
Duy Nguyen
67
23
0
08 Aug 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of
  Exponential-family Approximations
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
49
71
0
07 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDLUQCV
139
247
0
06 Jun 2019
High-dimensional copula variational approximation through transformation
High-dimensional copula variational approximation through transformation
M. Smith
Rubén Loaiza-Maya
David J. Nott
67
33
0
16 Apr 2019
The Variational Predictive Natural Gradient
The Variational Predictive Natural Gradient
Da Tang
Rajesh Ranganath
BDLDRL
32
10
0
07 Mar 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
48
35
0
24 Jan 2019
Bayesian variational inference for exponential random graph models
Bayesian variational inference for exponential random graph models
Linda S. L. Tan
Nial Friel
60
17
0
10 Nov 2018
Variance reduction properties of the reparameterization trick
Variance reduction properties of the reparameterization trick
Ming Xu
M. Quiroz
Robert Kohn
Scott A. Sisson
AAML
75
67
0
27 Sep 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
149
272
0
13 Jun 2018
Bayesian Deep Net GLM and GLMM
Bayesian Deep Net GLM and GLMM
Minh-Ngoc Tran
Nghia Nguyen
David J. Nott
Robert Kohn
BDL
116
75
0
25 May 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
73
86
0
24 Mar 2018
Noisy Natural Gradient as Variational Inference
Noisy Natural Gradient as Variational Inference
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
ODL
72
212
0
06 Dec 2017
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic
  Gradients
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Lukas Balles
Philipp Hennig
75
169
0
22 May 2017
Conjugate-Computation Variational Inference : Converting Variational
  Inference in Non-Conjugate Models to Inferences in Conjugate Models
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
51
137
0
13 Mar 2017
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,216
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
272
3,702
0
26 May 2016
Gaussian variational approximation with sparse precision matrices
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
102
77
0
18 May 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
125
47
0
03 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
114
718
0
02 Mar 2016
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRLVLM
86
338
0
07 Nov 2015
Beyond Convexity: Stochastic Quasi-Convex Optimization
Beyond Convexity: Stochastic Quasi-Convex Optimization
Elad Hazan
Kfir Y. Levy
Shai Shalev-Shwartz
68
176
0
08 Jul 2015
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
69
76
0
29 Jun 2015
Variational Gaussian Copula Inference
Variational Gaussian Copula Inference
Shaobo Han
X. Liao
David B. Dunson
Lawrence Carin
66
56
0
19 Jun 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
104
1,014
0
19 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
New insights and perspectives on the natural gradient method
New insights and perspectives on the natural gradient method
James Martens
ODL
73
624
0
03 Dec 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
142
1,167
0
31 Dec 2013
Inferring Parameters and Structure of Latent Variable Models by
  Variational Bayes
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
H. Attias
CMLBDL
71
666
0
23 Jan 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
155
6,625
0
22 Dec 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
259
2,625
0
29 Jun 2012
Fixed-Form Variational Posterior Approximation through Stochastic Linear
  Regression
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
Tim Salimans
David A. Knowles
118
252
0
28 Jun 2012
Variational Bayesian Inference with Stochastic Search
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
106
499
0
27 Jun 2012
Variational Inference for Generalized Linear Mixed Models Using
  Partially Noncentered Parametrizations
Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations
Linda S. L. Tan
David J. Nott
109
49
0
17 May 2012
1