Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.00060
Cited By
Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural Ordinary Differential Equations
31 August 2021
Alec J. Linot
M. Graham
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural Ordinary Differential Equations"
22 / 22 papers shown
Title
On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions
Jake Buzhardt
C. Ricardo Constante-Amores
Michael D. Graham
71
2
0
20 Nov 2024
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
36
4
0
09 Nov 2024
Inferring stability properties of chaotic systems on autoencoders' latent spaces
Elise Özalp
Luca Magri
35
1
0
23 Oct 2024
Modeling chaotic Lorenz ODE System using Scientific Machine Learning
Sameera S Kashyap
Raj Abhijit Dandekar
Rajat Dandekar
Sreedath Panat
AI4Cl
AI4CE
24
0
0
09 Oct 2024
Stability analysis of chaotic systems in latent spaces
Elise Özalp
Luca Magri
36
3
0
01 Oct 2024
Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints
George A. Kevrekidis
Mauro Maggioni
Soledad Villar
Y. Kevrekidis
DRL
49
0
0
28 Aug 2024
On instabilities in neural network-based physics simulators
Daniel Floryan
AI4CE
40
2
0
18 Jun 2024
Data-driven low-dimensional model of a sedimenting flexible fiber
Andrew J Fox
Michael D. Graham
AI4CE
24
1
0
16 May 2024
Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models
Muralikrishnan Gopalakrishnan Meena
Demetri Liousas
Andrew D. Simin
Aditya Kashi
Wesley Brewer
James J. Riley
S. D. B. Kops
AI4TS
AI4CE
49
1
0
24 Apr 2024
Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Carlos E. Pérez De Jesús
Alec J. Linot
Michael D. Graham
AI4CE
35
1
0
15 Dec 2023
Operator Learning for Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods
Chuanqi Chen
Jin-Long Wu
AI4CE
34
5
0
20 Nov 2023
Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era
E. D. Koronaki
N. Evangelou
Cristina P. Martin-Linares
E. Titi
Ioannis G. Kevrekidis
18
6
0
24 Oct 2023
Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches
Ricardo Constante-Amores
Alec J. Linot
Michael D. Graham
32
10
0
10 Oct 2023
Unified Long-Term Time-Series Forecasting Benchmark
Wenzhuo Zhou
Szymon Haponiuk
AI4TS
28
2
0
27 Sep 2023
Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems
Kevin Zeng
Carlos E. Pérez De Jesús
Andrew J Fox
M. Graham
AI4CE
51
12
0
01 May 2023
Turbulence control in plane Couette flow using low-dimensional neural ODE-based models and deep reinforcement learning
Alec J. Linot
Kevin Zeng
M. Graham
AI4CE
16
19
0
28 Jan 2023
Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow
Alec J. Linot
M. Graham
AI4CE
16
18
0
11 Jan 2023
Deep learning delay coordinate dynamics for chaotic attractors from partial observable data
Charles D. Young
M. Graham
11
16
0
20 Nov 2022
Data-driven low-dimensional dynamic model of Kolmogorov flow
Carlos E. Pérez De Jesús
M. Graham
57
23
0
29 Oct 2022
Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning
Kevin Zeng
Alec J. Linot
M. Graham
AI4CE
22
28
0
01 May 2022
Stabilized Neural Ordinary Differential Equations for Long-Time Forecasting of Dynamical Systems
Alec J. Linot
J. Burby
Q. Tang
Prasanna Balaprakash
M. Graham
R. Maulik
AI4TS
14
74
0
29 Mar 2022
Data-driven discovery of intrinsic dynamics
D. Floryan
M. Graham
AI4CE
102
72
0
12 Aug 2021
1