Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.12006
Cited By
When and how epochwise double descent happens
26 August 2021
Cory Stephenson
Tyler Lee
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"When and how epochwise double descent happens"
23 / 23 papers shown
Title
On the Relationship Between Double Descent of CNNs and Shape/Texture Bias Under Learning Process
Shun Iwase
Shuya Takahashi
Nakamasa Inoue
Rio Yokota
Ryo Nakamura
Hirokatsu Kataoka
133
0
0
04 Mar 2025
Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
Mouin Ben Ammar
David Brellmann
Arturo Mendoza
Antoine Manzanera
Gianni Franchi
OODD
87
0
0
04 Nov 2024
On the geometry of generalization and memorization in deep neural networks
Cory Stephenson
Suchismita Padhy
Abhinav Ganesh
Yue Hui
Hanlin Tang
SueYeon Chung
TDI
AI4CE
77
73
0
30 May 2021
Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
Curtis G. Northcutt
Anish Athalye
Jonas W. Mueller
73
532
0
26 Mar 2021
Early Stopping in Deep Networks: Double Descent and How to Eliminate it
Reinhard Heckel
Fatih Yilmaz
65
45
0
20 Jul 2020
A Brief Prehistory of Double Descent
Marco Loog
T. Viering
A. Mey
Jesse H. Krijthe
David Tax
49
69
0
07 Apr 2020
More Data Can Hurt for Linear Regression: Sample-wise Double Descent
Preetum Nakkiran
50
68
0
16 Dec 2019
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
121
942
0
04 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
511
42,449
0
03 Dec 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
83
635
0
14 Aug 2019
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
195
1,950
0
06 Jun 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
128
247
0
28 May 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
211
1,104
0
18 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
232
1,650
0
28 Dec 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
219
1,272
0
04 Oct 2018
Insights on representational similarity in neural networks with canonical correlation
Ari S. Morcos
M. Raghu
Samy Bengio
DRL
63
446
0
14 Jun 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
60
419
0
05 Feb 2018
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
139
469
0
10 Oct 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
339
4,629
0
10 Nov 2016
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
204
6,188
0
15 Sep 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
883
27,373
0
02 Dec 2015
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DH
ODL
193
2,200
0
24 Jun 2012
1