ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.08843
  4. Cited By
Learning Equilibria in Matching Markets from Bandit Feedback

Learning Equilibria in Matching Markets from Bandit Feedback

19 August 2021
Meena Jagadeesan
Alexander Wei
Yixin Wang
Michael I. Jordan
Jacob Steinhardt
ArXivPDFHTML

Papers citing "Learning Equilibria in Matching Markets from Bandit Feedback"

13 / 13 papers shown
Title
Provably Efficient Algorithm for Best Scoring Rule Identification in Online Principal-Agent Information Acquisition
Provably Efficient Algorithm for Best Scoring Rule Identification in Online Principal-Agent Information Acquisition
Zichen Wang
Chuanhao Li
Huazheng Wang
32
0
0
23 May 2025
Bandit Optimal Transport
Bandit Optimal Transport
Lorenzo Croissant
102
0
0
11 Feb 2025
Learning Optimal Stable Matches in Decentralized Markets with Unknown Preferences
Learning Optimal Stable Matches in Decentralized Markets with Unknown Preferences
Vade Shah
Bryce L. Ferguson
Jason R. Marden
58
2
0
07 Sep 2024
Statistical Inference for Fisher Market Equilibrium
Statistical Inference for Fisher Market Equilibrium
Luofeng Liao
Yuan Gao
Christian Kroer
58
4
0
29 Sep 2022
Beyond $\log^2(T)$ Regret for Decentralized Bandits in Matching Markets
Beyond log⁡2(T)\log^2(T)log2(T) Regret for Decentralized Bandits in Matching Markets
Soumya Basu
Karthik Abinav Sankararaman
Abishek Sankararaman
26
32
0
12 Mar 2021
The Symmetry between Arms and Knapsacks: A Primal-Dual Approach for
  Bandits with Knapsacks
The Symmetry between Arms and Knapsacks: A Primal-Dual Approach for Bandits with Knapsacks
Xiaocheng Li
Chunlin Sun
Yinyu Ye
41
21
0
12 Feb 2021
Regret, stability & fairness in matching markets with bandit learners
Regret, stability & fairness in matching markets with bandit learners
Sarah H. Cen
Devavrat Shah
FaML
42
24
0
11 Feb 2021
An Asymptotically Optimal Primal-Dual Incremental Algorithm for
  Contextual Linear Bandits
An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits
Andrea Tirinzoni
Matteo Pirotta
Marcello Restelli
A. Lazaric
70
34
0
23 Oct 2020
The Complexity of Interactively Learning a Stable Matching by Trial and
  Error
The Complexity of Interactively Learning a Stable Matching by Trial and Error
E. Emamjomeh-Zadeh
Yannai A. Gonczarowski
David Kempe
35
6
0
18 Feb 2020
Competing Bandits in Matching Markets
Competing Bandits in Matching Markets
Lydia T. Liu
Horia Mania
Michael I. Jordan
32
86
0
12 Jun 2019
Adversarial Bandits with Knapsacks
Adversarial Bandits with Knapsacks
Nicole Immorlica
Karthik Abinav Sankararaman
Robert Schapire
Aleksandrs Slivkins
98
113
0
28 Nov 2018
Matching while Learning
Matching while Learning
Ramesh Johari
Vijay Kamble
Yashodhan Kanoria
30
64
0
15 Mar 2016
Bandits with Knapsacks
Bandits with Knapsacks
Ashwinkumar Badanidiyuru
Robert D. Kleinberg
Aleksandrs Slivkins
74
429
0
11 May 2013
1