ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.04549
30
64

Matching while Learning

15 March 2016
Ramesh Johari
Vijay Kamble
Yashodhan Kanoria
ArXivPDFHTML
Abstract

We consider the problem faced by a service platform that needs to match limited supply with demand but also to learn the attributes of new users in order to match them better in the future. We introduce a benchmark model with heterogeneous "workers" (demand) and a limited supply of "jobs" that arrive over time. Job types are known to the platform, but worker types are unknown and must be learned by observing match outcomes. Workers depart after performing a certain number of jobs. The expected payoff from a match depends on the pair of types and the goal is to maximize the steady-state rate of accumulation of payoff. Though we use terminology inspired by labor markets, our framework applies more broadly to platforms where a limited supply of heterogeneous products is matched to users over time. Our main contribution is a complete characterization of the structure of the optimal policy in the limit that each worker performs many jobs. The platform faces a trade-off for each worker between myopically maximizing payoffs (exploitation) and learning the type of the worker (exploration). This creates a multitude of multi-armed bandit problems, one for each worker, coupled together by the constraint on availability of jobs of different types (capacity constraints). We find that the platform should estimate a shadow price for each job type, and use the payoffs adjusted by these prices, first, to determine its learning goals and then, for each worker, (i) to balance learning with payoffs during the "exploration phase," and (ii) to myopically match after it has achieved its learning goals during the "exploitation phase."

View on arXiv
Comments on this paper