ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.07594
  4. Cited By
Coalesced Multi-Output Tsetlin Machines with Clause Sharing

Coalesced Multi-Output Tsetlin Machines with Clause Sharing

17 August 2021
Sondre Glimsdal
Ole-Christoffer Granmo
ArXivPDFHTML

Papers citing "Coalesced Multi-Output Tsetlin Machines with Clause Sharing"

26 / 26 papers shown
Title
Adversarial Attacks on AI-Generated Text Detection Models: A Token Probability-Based Approach Using Embeddings
Adversarial Attacks on AI-Generated Text Detection Models: A Token Probability-Based Approach Using Embeddings
Ahmed K. Kadhim
Lei Jiao
Rishad Shafik
Ole-Christoffer Granmo
DeLMO
146
0
0
31 Jan 2025
Explainable Tsetlin Machine framework for fake news detection with
  credibility score assessment
Explainable Tsetlin Machine framework for fake news detection with credibility score assessment
Bimal Bhattarai
Ole-Christoffer Granmo
Lei Jiao
41
37
0
19 May 2021
Word-level Human Interpretable Scoring Mechanism for Novel Text
  Detection Using Tsetlin Machines
Word-level Human Interpretable Scoring Mechanism for Novel Text Detection Using Tsetlin Machines
Bimal Bhattarai
Ole-Christoffer Granmo
Lei Jiao
66
20
0
10 May 2021
Low-Power Audio Keyword Spotting using Tsetlin Machines
Low-Power Audio Keyword Spotting using Tsetlin Machines
Jie Lei
Tousif Rahman
Rishad Shafik
A. Wheeldon
Alex Yakovlev
Ole-Christoffer Granmo
F. Kawsar
Akhil Mathur
49
40
0
27 Jan 2021
On the Convergence of Tsetlin Machines for the XOR Operator
On the Convergence of Tsetlin Machines for the XOR Operator
Lei Jiao
Xuan Zhang
Ole-Christoffer Granmo
Kuruge Darshana Abeyrathna
52
31
0
07 Jan 2021
Low-Latency Asynchronous Logic Design for Inference at the Edge
Low-Latency Asynchronous Logic Design for Inference at the Edge
A. Wheeldon
Alex Yakovlev
Rishad Shafik
Jordan Morris
31
13
0
07 Dec 2020
Measuring the Novelty of Natural Language Text Using the Conjunctive
  Clauses of a Tsetlin Machine Text Classifier
Measuring the Novelty of Natural Language Text Using the Conjunctive Clauses of a Tsetlin Machine Text Classifier
Bimal Bhattarai
Ole-Christoffer Granmo
Lei Jiao
57
32
0
17 Nov 2020
Massively Parallel and Asynchronous Tsetlin Machine Architecture
  Supporting Almost Constant-Time Scaling
Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling
Kuruge Darshana Abeyrathna
Bimal Bhattarai
Morten Goodwin
S. Gorji
Ole-Christoffer Granmo
Lei Jiao
Rupsa Saha
Rohan Kumar Yadav
LRM
37
37
0
10 Sep 2020
StructureBoost: Efficient Gradient Boosting for Structured Categorical
  Variables
StructureBoost: Efficient Gradient Boosting for Structured Categorical Variables
B. Lucena
23
4
0
08 Jul 2020
A Novel Multi-Step Finite-State Automaton for Arbitrarily Deterministic
  Tsetlin Machine Learning
A Novel Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning
Kuruge Darshana Abeyrathna
Ole-Christoffer Granmo
Rishad Shafik
Alex Yakovlev
A. Wheeldon
Jie Lei
Morten Goodwin
AI4CE
40
16
0
04 Jul 2020
Extending the Tsetlin Machine With Integer-Weighted Clauses for
  Increased Interpretability
Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability
Kuruge Darshana Abeyrathna
Ole-Christoffer Granmo
Morten Goodwin
46
39
0
11 May 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
79
417
0
29 Apr 2020
Increasing the Inference and Learning Speed of Tsetlin Machines with
  Clause Indexing
Increasing the Inference and Learning Speed of Tsetlin Machines with Clause Indexing
S. Gorji
Ole-Christoffer Granmo
Sondre Glimsdal
J. Edwards
M. G. Olsen
AI4CE
16
15
0
07 Apr 2020
InterpretML: A Unified Framework for Machine Learning Interpretability
InterpretML: A Unified Framework for Machine Learning Interpretability
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
147
487
0
19 Sep 2019
A Tsetlin Machine with Multigranular Clauses
A Tsetlin Machine with Multigranular Clauses
S. Gorji
Ole-Christoffer Granmo
Adrian Phoulady
M. G. Olsen
28
22
0
16 Sep 2019
The Convolutional Tsetlin Machine
The Convolutional Tsetlin Machine
Ole-Christoffer Granmo
Sondre Glimsdal
Lei Jiao
M. G. Olsen
C. Omlin
G. T. Berge
37
81
0
23 May 2019
Accelerating Deterministic and Stochastic Binarized Neural Networks on
  FPGAs Using OpenCL
Accelerating Deterministic and Stochastic Binarized Neural Networks on FPGAs Using OpenCL
Corey Lammie
Wei Xiang
M. R. Azghadi
BDL
20
9
0
15 May 2019
Learning Logistic Circuits
Learning Logistic Circuits
Yitao Liang
Guy Van den Broeck
TPM
46
49
0
27 Feb 2019
Deep Learning for Classical Japanese Literature
Deep Learning for Classical Japanese Literature
Tarin Clanuwat
Mikel Bober-Irizar
A. Kitamoto
Alex Lamb
Kazuaki Yamamoto
David R Ha
100
709
0
03 Dec 2018
Using the Tsetlin Machine to Learn Human-Interpretable Rules for
  High-Accuracy Text Categorization with Medical Applications
Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications
G. T. Berge
Ole-Christoffer Granmo
Tor Tveit
Morten Goodwin
Lei Jiao
B. Matheussen
VLM
49
75
0
12 Sep 2018
The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to
  Optimal Pattern Recognition with Propositional Logic
The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic
Ole-Christoffer Granmo
38
150
0
04 Apr 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
790
38,735
0
09 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
BinaryConnect: Training Deep Neural Networks with binary weights during
  propagations
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
206
2,985
0
02 Nov 2015
1