ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04308
  4. Cited By
Do Datasets Have Politics? Disciplinary Values in Computer Vision
  Dataset Development

Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development

9 August 2021
M. Scheuerman
Emily L. Denton
A. Hanna
ArXivPDFHTML

Papers citing "Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development"

26 / 26 papers shown
Title
Can We Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation
Can We Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation
Maria Eriksson
Erasmo Purificato
Arman Noroozian
Joao Vinagre
Guillaume Chaslot
Emilia Gomez
David Fernandez Llorca
ELM
152
1
0
10 Feb 2025
The Promises and Pitfalls of LLM Annotations in Dataset Labeling: a Case Study on Media Bias Detection
Tomas Horych
Christoph Mandl
Terry Ruas
André Greiner-Petter
Bela Gipp
Akiko Aizawa
Timo Spinde
99
4
0
17 Nov 2024
HeteroSwitch: Characterizing and Taming System-Induced Data
  Heterogeneity in Federated Learning
HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning
Gyudong Kim
Mehdi Ghasemi
Soroush Heidari
Seungryong Kim
Young Geun Kim
S. Vrudhula
Carole-Jean Wu
36
1
0
07 Mar 2024
Ground Truth Or Dare: Factors Affecting The Creation Of Medical Datasets
  For Training AI
Ground Truth Or Dare: Factors Affecting The Creation Of Medical Datasets For Training AI
H. D. Zając
Natalia-Rozalia Avlona
T. O. Andersen
F. Kensing
Irina Shklovski
27
17
0
12 Aug 2023
VisoGender: A dataset for benchmarking gender bias in image-text pronoun
  resolution
VisoGender: A dataset for benchmarking gender bias in image-text pronoun resolution
S. Hall
F. G. Abrantes
Hanwen Zhu
Grace A. Sodunke
Aleksandar Shtedritski
Hannah Rose Kirk
CoGe
39
39
0
21 Jun 2023
Training on Thin Air: Improve Image Classification with Generated Data
Training on Thin Air: Improve Image Classification with Generated Data
Yongchao Zhou
Hshmat Sahak
Jimmy Ba
DiffM
24
43
0
24 May 2023
Not Only WEIRD but "Uncanny"? A Systematic Review of Diversity in
  Human-Robot Interaction Research
Not Only WEIRD but "Uncanny"? A Systematic Review of Diversity in Human-Robot Interaction Research
Katie Seaborn
Giulia Barbareschi
Shruti Chandra
18
25
0
18 Apr 2023
Overwriting Pretrained Bias with Finetuning Data
Overwriting Pretrained Bias with Finetuning Data
Angelina Wang
Olga Russakovsky
31
30
0
10 Mar 2023
Muse: Text-To-Image Generation via Masked Generative Transformers
Muse: Text-To-Image Generation via Masked Generative Transformers
Huiwen Chang
Han Zhang
Jarred Barber
AJ Maschinot
José Lezama
...
Kevin Patrick Murphy
William T. Freeman
Michael Rubinstein
Yuanzhen Li
Dilip Krishnan
DiffM
197
526
0
02 Jan 2023
Skew Class-balanced Re-weighting for Unbiased Scene Graph Generation
Skew Class-balanced Re-weighting for Unbiased Scene Graph Generation
Haeyong Kang
Chang D. Yoo
42
6
0
01 Jan 2023
Evaluation for Change
Evaluation for Change
Rishi Bommasani
ELM
40
0
0
20 Dec 2022
Fighting FIRe with FIRE: Assessing the Validity of Text-to-Video
  Retrieval Benchmarks
Fighting FIRe with FIRE: Assessing the Validity of Text-to-Video Retrieval Benchmarks
Pedro Rodriguez
Mahmoud Azab
Becka Silvert
Renato Sanchez
Linzy Labson
Hardik Shah
Seungwhan Moon
50
1
0
10 Oct 2022
Attention is All They Need: Exploring the Media Archaeology of the
  Computer Vision Research Paper
Attention is All They Need: Exploring the Media Archaeology of the Computer Vision Research Paper
Sam Goree
G. Appleby
David J. Crandall
Norman Su
31
2
0
22 Sep 2022
Making Intelligence: Ethical Values in IQ and ML Benchmarks
Making Intelligence: Ethical Values in IQ and ML Benchmarks
Borhane Blili-Hamelin
Leif Hancox-Li
41
16
0
01 Sep 2022
Bugs in the Data: How ImageNet Misrepresents Biodiversity
Bugs in the Data: How ImageNet Misrepresents Biodiversity
A. Luccioni
David Rolnick
21
43
0
24 Aug 2022
Robots Enact Malignant Stereotypes
Robots Enact Malignant Stereotypes
Andrew Hundt
William Agnew
V. Zeng
Severin Kacianka
Matthew C. Gombolay
LM&Ro
35
42
0
23 Jul 2022
Leakage and the Reproducibility Crisis in ML-based Science
Leakage and the Reproducibility Crisis in ML-based Science
Sayash Kapoor
Arvind Narayanan
25
177
0
14 Jul 2022
Smallset Timelines: A Visual Representation of Data Preprocessing
  Decisions
Smallset Timelines: A Visual Representation of Data Preprocessing Decisions
L. R. Lucchesi
Petra Kuhnert
Jenny L. Davis
Lexing Xie
22
10
0
10 Jun 2022
Photorealistic Text-to-Image Diffusion Models with Deep Language
  Understanding
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Chitwan Saharia
William Chan
Saurabh Saxena
Lala Li
Jay Whang
...
Raphael Gontijo-Lopes
Tim Salimans
Jonathan Ho
David J Fleet
Mohammad Norouzi
VLM
102
5,817
0
23 May 2022
Evaluation Gaps in Machine Learning Practice
Evaluation Gaps in Machine Learning Practice
Ben Hutchinson
Negar Rostamzadeh
Christina Greer
Katherine A. Heller
Vinodkumar Prabhakaran
ELM
36
56
0
11 May 2022
Artificial Concepts of Artificial Intelligence: Institutional Compliance
  and Resistance in AI Startups
Artificial Concepts of Artificial Intelligence: Institutional Compliance and Resistance in AI Startups
Amy A. Winecoff
E. A. Watkins
33
17
0
02 Mar 2022
The craft and coordination of data curation: complicating "workflow"
  views of data science
The craft and coordination of data curation: complicating "workflow" views of data science
A. Thomer
Dharma Akmon
J. York
Allison R. B. Tyler
Faye O. Polasek
Sara Lafia
Libby Hemphill
E. Yakel
21
20
0
09 Feb 2022
Jury Learning: Integrating Dissenting Voices into Machine Learning
  Models
Jury Learning: Integrating Dissenting Voices into Machine Learning Models
Mitchell L. Gordon
Michelle S. Lam
J. Park
Kayur Patel
Jeffrey T. Hancock
Tatsunori Hashimoto
Michael S. Bernstein
29
146
0
07 Feb 2022
Reduced, Reused and Recycled: The Life of a Dataset in Machine Learning
  Research
Reduced, Reused and Recycled: The Life of a Dataset in Machine Learning Research
Bernard Koch
Emily L. Denton
A. Hanna
J. Foster
53
140
0
03 Dec 2021
AI and the Everything in the Whole Wide World Benchmark
AI and the Everything in the Whole Wide World Benchmark
Inioluwa Deborah Raji
Emily M. Bender
Amandalynne Paullada
Emily L. Denton
A. Hanna
30
292
0
26 Nov 2021
Challenges of language technologies for the indigenous languages of the
  Americas
Challenges of language technologies for the indigenous languages of the Americas
Manuel Mager
Ximena Gutierrez-Vasques
Gerardo E Sierra
Ivan Vladimir Meza Ruiz
VLM
211
88
0
12 Jun 2018
1