ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01538
  4. Cited By
Geometry of Linear Convolutional Networks

Geometry of Linear Convolutional Networks

3 August 2021
Kathlén Kohn
Thomas Merkh
Guido Montúfar
Matthew Trager
ArXivPDFHTML

Papers citing "Geometry of Linear Convolutional Networks"

24 / 24 papers shown
Title
Understanding Mode Connectivity via Parameter Space Symmetry
Understanding Mode Connectivity via Parameter Space Symmetry
B. Zhao
Nima Dehmamy
Robin Walters
Rose Yu
211
7
0
29 May 2025
Geometry of Linear Neural Networks: Equivariance and Invariance under Permutation Groups
Geometry of Linear Neural Networks: Equivariance and Invariance under Permutation Groups
Kathlén Kohn
Anna-Laura Sattelberger
Vahid Shahverdi
56
3
0
24 Sep 2023
Optimization Theory for ReLU Neural Networks Trained with Normalization
  Layers
Optimization Theory for ReLU Neural Networks Trained with Normalization Layers
Yonatan Dukler
Quanquan Gu
Guido Montúfar
56
30
0
11 Jun 2020
Wasserstein Distance to Independence Models
Wasserstein Distance to Independence Models
Turku Ozlum cCelik
Asgar Jamneshan
Guido Montúfar
Bernd Sturmfels
Lorenzo Venturello
21
26
0
15 Mar 2020
Learning deep linear neural networks: Riemannian gradient flows and
  convergence to global minimizers
Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers
B. Bah
Holger Rauhut
Ulrich Terstiege
Michael Westdickenberg
MLT
32
63
0
12 Oct 2019
Pure and Spurious Critical Points: a Geometric Study of Linear Networks
Pure and Spurious Critical Points: a Geometric Study of Linear Networks
Matthew Trager
Kathlén Kohn
Joan Bruna
49
28
0
03 Oct 2019
Optimal Transport to a Variety
Optimal Transport to a Variety
Turku Ozlum Celik
Asgar Jamneshan
Guido Montúfar
Bernd Sturmfels
Lorenzo Venturello
OT
37
11
0
25 Sep 2019
Gradient Dynamics of Shallow Univariate ReLU Networks
Gradient Dynamics of Shallow Univariate ReLU Networks
Francis Williams
Matthew Trager
Claudio Silva
Daniele Panozzo
Denis Zorin
Joan Bruna
53
80
0
18 Jun 2019
Depth creates no more spurious local minima
Depth creates no more spurious local minima
Li Zhang
37
19
0
28 Jan 2019
A Convergence Theory for Deep Learning via Over-Parameterization
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
242
1,462
0
09 Nov 2018
The loss surface of deep linear networks viewed through the algebraic
  geometry lens
The loss surface of deep linear networks viewed through the algebraic geometry lens
D. Mehta
Tianran Chen
Tingting Tang
J. Hauenstein
ODL
48
32
0
17 Oct 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural
  Networks
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
110
290
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
214
1,272
0
04 Oct 2018
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Yuejie Chi
Yue M. Lu
Yuxin Chen
58
425
0
25 Sep 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
124
411
0
01 Jun 2018
On the Optimization of Deep Networks: Implicit Acceleration by
  Overparameterization
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora
Nadav Cohen
Elad Hazan
99
484
0
19 Feb 2018
Deep linear neural networks with arbitrary loss: All local minima are
  global
Deep linear neural networks with arbitrary loss: All local minima are global
T. Laurent
J. V. Brecht
ODL
55
136
0
05 Dec 2017
The Implicit Bias of Gradient Descent on Separable Data
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
153
916
0
27 Oct 2017
Maximum likelihood estimation of the Latent Class Model through model
  boundary decomposition
Maximum likelihood estimation of the Latent Class Model through model boundary decomposition
E. Allman
H. Cervantes
R. Evans
Serkan Hocsten
Kaie Kubjas
Daniela Lemke
J. Rhodes
Piotr Zwiernik
33
15
0
04 Oct 2017
Mixtures and products in two graphical models
Mixtures and products in two graphical models
A. Seigal
Guido Montúfar
TPM
29
17
0
15 Sep 2017
Depth Creates No Bad Local Minima
Depth Creates No Bad Local Minima
Haihao Lu
Kenji Kawaguchi
ODL
FAtt
71
121
0
27 Feb 2017
Identity Matters in Deep Learning
Identity Matters in Deep Learning
Moritz Hardt
Tengyu Ma
OOD
81
398
0
14 Nov 2016
Deep Learning without Poor Local Minima
Deep Learning without Poor Local Minima
Kenji Kawaguchi
ODL
219
923
0
23 May 2016
Exact solutions to the nonlinear dynamics of learning in deep linear
  neural networks
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
165
1,844
0
20 Dec 2013
1