Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.00295
Cited By
Fair Representation Learning using Interpolation Enabled Disentanglement
31 July 2021
Akshita Jha
B. Vinzamuri
Chandan K. Reddy
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fair Representation Learning using Interpolation Enabled Disentanglement"
20 / 20 papers shown
Title
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination
Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
FaML
58
50
0
25 Sep 2020
Fairness by Learning Orthogonal Disentangled Representations
Mhd Hasan Sarhan
Nassir Navab
Abouzar Eslami
Shadi Albarqouni
FaML
OOD
CML
81
97
0
12 Mar 2020
Auditing ML Models for Individual Bias and Unfairness
Songkai Xue
Mikhail Yurochkin
Yuekai Sun
MLAU
81
23
0
11 Mar 2020
Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?
Avrim Blum
Kevin Stangl
FaML
43
87
0
02 Dec 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
49
96
0
26 Aug 2019
Disentangling Influence: Using Disentangled Representations to Audit Model Predictions
Charles Marx
R. L. Phillips
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
TDI
CML
MLAU
51
27
0
20 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
180
333
0
06 Jun 2019
CCMI : Classifier based Conditional Mutual Information Estimation
Sudipto Mukherjee
Himanshu Asnani
Sreeram Kannan
VLM
101
81
0
05 Jun 2019
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
73
226
0
31 May 2019
Hunting for Discriminatory Proxies in Linear Regression Models
Samuel Yeom
Anupam Datta
Matt Fredrikson
101
19
0
16 Oct 2018
Active Fairness in Algorithmic Decision Making
Alejandro Noriega-Campero
Michiel A. Bakker
Bernardo Garcia-Bulle
Alex Pentland
FaML
49
85
0
28 Sep 2018
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
David Berthelot
Colin Raffel
Aurko Roy
Ian Goodfellow
52
264
0
19 Jul 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
373
681
0
17 Feb 2018
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,346
0
16 Feb 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
181
1,380
0
22 Jan 2018
A Convex Framework for Fair Regression
R. Berk
Hoda Heidari
S. Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FaML
107
342
0
07 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.0K
21,815
0
22 May 2017
Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
184
1,205
0
26 Oct 2016
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
217
633
0
03 Nov 2015
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
185
1,984
0
11 Dec 2014
1