ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10211
  4. Cited By
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise

Differentiable Annealed Importance Sampling and the Perils of Gradient Noise

21 July 2021
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
ArXivPDFHTML

Papers citing "Differentiable Annealed Importance Sampling and the Perils of Gradient Noise"

19 / 19 papers shown
Title
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
35
3
0
13 Oct 2024
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
36
8
0
03 May 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
40
1
0
05 Jan 2024
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo
  Samplers
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers
Johannes Zenn
Robert Bamler
32
3
0
27 Apr 2023
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
27
1
0
27 Sep 2022
Score-Based Diffusion meets Annealed Importance Sampling
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
41
43
0
16 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
38
77
0
03 Aug 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
MixFlows: principled variational inference via mixed flows
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
57
8
0
16 May 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
35
14
0
11 Mar 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical
  Models
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
29
5
0
08 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
37
46
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
33
34
0
08 Jul 2021
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
41
35
0
19 Oct 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
52
65
0
23 Jul 2020
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
37
158
0
21 Oct 2016
1