Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.09947
Cited By
Preventing dataset shift from breaking machine-learning biomarkers
21 July 2021
Jéroome Dockes
Gaël Varoquaux
J B Poline
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Preventing dataset shift from breaking machine-learning biomarkers"
21 / 21 papers shown
Title
Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction
Thomas Sanchez
Vladyslav Zalevsky
Angeline Mihailo
Gerard Martí Juan
E. Eixarch
Andras Jakab
Vincent Dunet
Mériam Koob
G. Auzias
Meritxell Bach Cuadra
70
0
0
13 Mar 2025
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
47
81
0
28 Jul 2020
Kernel Distributionally Robust Optimization
Jia Jie Zhu
Wittawat Jitkrittum
Moritz Diehl
Bernhard Schölkopf
58
16
0
12 Jun 2020
Risk of Training Diagnostic Algorithms on Data with Demographic Bias
Samaneh Abbasi-Sureshjani
Ralf Raumanns
B. Michels
Gerard Schouten
Veronika Cheplygina
FaML
45
36
0
20 May 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
298
931
0
02 Mar 2020
Machine Learning with Multi-Site Imaging Data: An Empirical Study on the Impact of Scanner Effects
Ben Glocker
Robert Robinson
Daniel Coelho De Castro
Qi Dou
E. Konukoglu
38
91
0
10 Oct 2019
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging
Luke Oakden-Rayner
Jared A. Dunnmon
G. Carneiro
Christopher Ré
OOD
61
379
0
27 Sep 2019
A review of domain adaptation without target labels
Wouter M. Kouw
Marco Loog
OOD
VLM
34
486
0
16 Jan 2019
Learning Models with Uniform Performance via Distributionally Robust Optimization
John C. Duchi
Hongseok Namkoong
OOD
55
416
0
20 Oct 2018
Fairness Without Demographics in Repeated Loss Minimization
Tatsunori B. Hashimoto
Megha Srivastava
Hongseok Namkoong
Percy Liang
FaML
95
582
0
20 Jun 2018
Data Augmentation Generative Adversarial Networks
Antreas Antoniou
Amos Storkey
Harrison Edwards
MedIm
GAN
129
1,070
0
12 Nov 2017
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OOD
DRL
85
476
0
05 Jun 2017
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GAN
OOD
252
4,653
0
17 Feb 2017
Variance-based regularization with convex objectives
John C. Duchi
Hongseok Namkoong
64
348
0
08 Oct 2016
Return of Frustratingly Easy Domain Adaptation
Baochen Sun
Jiashi Feng
Kate Saenko
OOD
79
1,838
0
17 Nov 2015
Optimal Transport for Domain Adaptation
Nicolas Courty
Rémi Flamary
D. Tuia
A. Rakotomamonjy
OT
OOD
108
1,117
0
02 Jul 2015
Learning Transferable Features with Deep Adaptation Networks
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
OOD
213
5,189
0
10 Feb 2015
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
81
607
0
27 Jun 2012
A survey of cross-validation procedures for model selection
Sylvain Arlot
Alain Celisse
179
3,587
0
27 Jul 2009
Empirical Bernstein Bounds and Sample Variance Penalization
Andreas Maurer
Massimiliano Pontil
256
542
0
21 Jul 2009
Sample Selection Bias Correction Theory
Corinna Cortes
M. Mohri
Michael Riley
Afshin Rostamizadeh
98
348
0
19 May 2008
1