Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.09734
Cited By
Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions
20 July 2021
Eoin Delaney
Derek Greene
Mark T. Keane
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions"
19 / 19 papers shown
Title
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Jonas Teufel
Annika Leinweber
Pascal Friederich
49
0
0
03 Apr 2025
Counterfactual Explanations for Model Ensembles Using Entropic Risk Measures
Erfaun Noorani
Pasan Dissanayake
Faisal Hamman
Sanghamitra Dutta
46
0
0
11 Mar 2025
All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
Kacper Sokol
Eyke Hüllermeier
53
2
0
24 Feb 2025
Generative Example-Based Explanations: Bridging the Gap between Generative Modeling and Explainability
Philipp Vaeth
Alexander M. Fruehwald
Benjamin Paassen
Magda Gregorova
GAN
28
0
0
28 Oct 2024
RECALL: A Benchmark for LLMs Robustness against External Counterfactual Knowledge
Yi Liu
Lianzhe Huang
Shicheng Li
Sishuo Chen
Hao Zhou
Fandong Meng
Jie Zhou
Xu Sun
RALM
64
33
0
14 Nov 2023
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
39
2
0
14 Aug 2023
Calibration in Deep Learning: A Survey of the State-of-the-Art
Cheng Wang
UQCV
34
37
0
02 Aug 2023
Counterfactuals of Counterfactuals: a back-translation-inspired approach to analyse counterfactual editors
Giorgos Filandrianos
Edmund Dervakos
Orfeas Menis Mastromichalakis
Chrysoula Zerva
Giorgos Stamou
AAML
37
5
0
26 May 2023
Explaining Model Confidence Using Counterfactuals
Thao Le
Tim Miller
Ronal Singh
L. Sonenberg
19
4
0
10 Mar 2023
RACCER: Towards Reachable and Certain Counterfactual Explanations for Reinforcement Learning
Jasmina Gajcin
Ivana Dusparic
CML
32
3
0
08 Mar 2023
Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ
Eoin Delaney
A. Pakrashi
Derek Greene
Markt. Keane
35
16
0
16 Dec 2022
Improving Model Understanding and Trust with Counterfactual Explanations of Model Confidence
Thao Le
Tim Miller
Ronal Singh
L. Sonenberg
14
9
0
06 Jun 2022
Exploring How Anomalous Model Input and Output Alerts Affect Decision-Making in Healthcare
Marissa Radensky
Dustin Burson
Rajya Bhaiya
Daniel S. Weld
26
0
0
27 Apr 2022
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
Jinghui Lu
Linyi Yang
Brian Mac Namee
Yue Zhang
27
39
0
24 Mar 2022
A Few Good Counterfactuals: Generating Interpretable, Plausible and Diverse Counterfactual Explanations
Barry Smyth
Mark T. Keane
CML
37
26
0
22 Jan 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
141
46
0
08 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1