ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.09734
  4. Cited By
Uncertainty Estimation and Out-of-Distribution Detection for
  Counterfactual Explanations: Pitfalls and Solutions

Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions

20 July 2021
Eoin Delaney
Derek Greene
Mark T. Keane
ArXivPDFHTML

Papers citing "Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions"

10 / 10 papers shown
Title
Explaining Black-Box Models through Counterfactuals
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
37
2
0
14 Aug 2023
Explaining Model Confidence Using Counterfactuals
Explaining Model Confidence Using Counterfactuals
Thao Le
Tim Miller
Ronal Singh
L. Sonenberg
19
4
0
10 Mar 2023
RACCER: Towards Reachable and Certain Counterfactual Explanations for
  Reinforcement Learning
RACCER: Towards Reachable and Certain Counterfactual Explanations for Reinforcement Learning
Jasmina Gajcin
Ivana Dusparic
CML
32
3
0
08 Mar 2023
Counterfactual Explanations for Misclassified Images: How Human and
  Machine Explanations Differ
Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ
Eoin Delaney
A. Pakrashi
Derek Greene
Markt. Keane
35
16
0
16 Dec 2022
Exploring How Anomalous Model Input and Output Alerts Affect
  Decision-Making in Healthcare
Exploring How Anomalous Model Input and Output Alerts Affect Decision-Making in Healthcare
Marissa Radensky
Dustin Burson
Rajya Bhaiya
Daniel S. Weld
26
0
0
27 Apr 2022
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
Jinghui Lu
Linyi Yang
Brian Mac Namee
Yue Zhang
27
39
0
24 Mar 2022
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
162
0
20 Oct 2020
BRPO: Batch Residual Policy Optimization
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
141
46
0
08 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1