ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.08924
  4. Cited By
Epistemic Neural Networks
v1v2v3v4v5v6v7v8 (latest)

Epistemic Neural Networks

19 July 2021
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Epistemic Neural Networks"

37 / 37 papers shown
Title
Uncertainty modeling for fine-tuned implicit functions
Uncertainty modeling for fine-tuned implicit functions
A. Susmelj
Mael Macuglia
Nataša Tagasovska
Reto Sutter
Sebastiano Caprara
Jean-Philippe Thiran
E. Konukoglu
138
2
0
17 Jun 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDLUQCV
140
2
0
31 May 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
268
22
0
28 Feb 2024
Selective Uncertainty Propagation in Offline RL
Selective Uncertainty Propagation in Offline RL
Sanath Kumar Krishnamurthy
Shrey Modi
Tanmay Gangwani
S. Katariya
Branislav Kveton
A. Rangi
OffRL
191
0
0
01 Feb 2023
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and
  Bootstrapping
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
84
20
0
08 Jun 2022
Evaluating High-Order Predictive Distributions in Deep Learning
Evaluating High-Order Predictive Distributions in Deep Learning
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Xiuyuan Lu
Benjamin Van Roy
57
10
0
28 Feb 2022
The Neural Testbed: Evaluating Joint Predictions
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
71
22
0
09 Oct 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
  Learning
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCVELM
91
96
0
07 Jun 2021
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
217
54
0
19 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
72
387
0
29 Apr 2021
Reinforcement Learning, Bit by Bit
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
57
70
0
06 Mar 2021
On Feature Collapse and Deep Kernel Learning for Single Forward Pass
  Uncertainty
On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty
Joost R. van Amersfoort
Lewis Smith
Andrew Jesson
Oscar Key
Y. Gal
UQCV
71
104
0
22 Feb 2021
Wisdom of Committees: An Overlooked Approach To Faster and More Accurate
  Models
Wisdom of Committees: An Overlooked Approach To Faster and More Accurate Models
Xiaofang Wang
Dan Kondratyuk
Eric Christiansen
Kris Kitani
Y. Alon
Elad Eban
57
49
0
03 Dec 2020
Training independent subnetworks for robust prediction
Training independent subnetworks for robust prediction
Marton Havasi
Rodolphe Jenatton
Stanislav Fort
Jeremiah Zhe Liu
Jasper Snoek
Balaji Lakshminarayanan
Andrew M. Dai
Dustin Tran
UQCVOOD
90
213
0
13 Oct 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDLUQCV
56
121
0
11 Jul 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
211
451
0
17 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCVUDEDLBDL
77
185
0
16 Jun 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
120
226
0
01 Jun 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
611
4,905
0
23 Jan 2020
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OODUQCV
123
629
0
05 Dec 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
183
1,702
0
06 Jun 2019
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OODFedMLELM
171
414
0
01 Jun 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
155
561
0
30 Apr 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UDBDLEDLUQCVPER
193
923
0
28 Feb 2018
Variational Gaussian Dropout is not Bayesian
Variational Gaussian Dropout is not Bayesian
Jiri Hron
A. G. Matthews
Zoubin Ghahramani
55
47
0
08 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
135
1,099
0
01 Nov 2017
Ensemble Sampling
Ensemble Sampling
Xiuyuan Lu
Benjamin Van Roy
129
121
0
20 May 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
59
599
0
13 Apr 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
100
307
0
22 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
362
4,719
0
15 Mar 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDLUQCV
73
1,739
0
08 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
842
5,841
0
05 Dec 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
Bootstrapped Thompson Sampling and Deep Exploration
Bootstrapped Thompson Sampling and Deep Exploration
Ian Osband
Benjamin Van Roy
162
105
0
01 Jul 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
852
9,346
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCVBDL
192
1,892
0
20 May 2015
Generalization and Exploration via Randomized Value Functions
Generalization and Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Zheng Wen
91
314
0
04 Feb 2014
1