Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.08024
Cited By
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
16 July 2021
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems"
31 / 31 papers shown
Title
Stable Port-Hamiltonian Neural Networks
Fabian J. Roth
Dominik K. Klein
Maximilian Kannapinn
Jan Peters
Oliver Weeger
72
1
0
04 Feb 2025
Symplectic Neural Flows for Modeling and Discovery
Priscilla Canizares
Davide Murari
Carola-Bibiane Schönlieb
Ferdia Sherry
Zakhar Shumaylov
80
1
0
21 Dec 2024
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
77
1
0
15 Dec 2024
Training Hamiltonian neural networks without backpropagation
Atamert Rahma
Chinmay Datar
Felix Dietrich
69
0
0
26 Nov 2024
Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation
Weizheng Wang
Chao Yu
Yu Wang
Byung-Cheol Min
144
2
0
20 Sep 2024
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
26
2
0
15 Aug 2024
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
Kaiyuan Tan
Peilun Li
Thomas Beckers
AI4CE
18
3
0
17 Jun 2024
Predicting Ship Responses in Different Seaways using a Generalizable Force Correcting Machine Learning Method
K. Marlantes
P. Bandyk
Kevin J. Maki
19
3
0
13 May 2024
Neural Operators Meet Energy-based Theory: Operator Learning for Hamiltonian and Dissipative PDEs
Yusuke Tanaka
Takaharu Yaguchi
Tomoharu Iwata
N. Ueda
AI4CE
37
0
0
14 Feb 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
13
9
0
31 Oct 2023
Separable Hamiltonian Neural Networks
Zi-Yu Khoo
Dawen Wu
Jonathan Sze Choong Low
Stéphane Bressan
20
1
0
03 Sep 2023
Deep Learning for Structure-Preserving Universal Stable Koopman-Inspired Embeddings for Nonlinear Canonical Hamiltonian Dynamics
P. Goyal
Süleyman Yıldız
P. Benner
36
2
0
26 Aug 2023
How to Learn and Generalize From Three Minutes of Data: Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential Equations
Franck Djeumou
Cyrus Neary
Ufuk Topcu
DiffM
24
8
0
10 Jun 2023
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
25
9
0
24 May 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
24
17
0
15 May 2023
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
18
3
0
09 May 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
13
12
0
01 Dec 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Sølve Eidnes
Alexander J. Stasik
Camilla Sterud
Eivind Bøhn
S. Riemer-Sørensen
11
17
0
06 Jun 2022
Learning reversible symplectic dynamics
Riccardo Valperga
K. Webster
Victoria G Klein
D. Turaev
J. Lamb
AI4CE
9
13
0
26 Apr 2022
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
27
31
0
03 Mar 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
15
39
0
10 Feb 2022
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
70
26
0
06 Dec 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
16
58
0
21 Oct 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
24
0
11 Sep 2021
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Hamiltonian neural networks for solving equations of motion
M. Mattheakis
David Sondak
Akshunna S. Dogra
P. Protopapas
19
56
0
29 Jan 2020
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,400
0
01 Dec 2016
1