ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.08024
  4. Cited By
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent
  Dynamical Systems

Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems

16 July 2021
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
    AI4CE
ArXivPDFHTML

Papers citing "Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems"

31 / 31 papers shown
Title
Stable Port-Hamiltonian Neural Networks
Stable Port-Hamiltonian Neural Networks
Fabian J. Roth
Dominik K. Klein
Maximilian Kannapinn
Jan Peters
Oliver Weeger
72
1
0
04 Feb 2025
Symplectic Neural Flows for Modeling and Discovery
Symplectic Neural Flows for Modeling and Discovery
Priscilla Canizares
Davide Murari
Carola-Bibiane Schönlieb
Ferdia Sherry
Zakhar Shumaylov
80
1
0
21 Dec 2024
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
77
1
0
15 Dec 2024
Training Hamiltonian neural networks without backpropagation
Training Hamiltonian neural networks without backpropagation
Atamert Rahma
Chinmay Datar
Felix Dietrich
69
0
0
26 Nov 2024
Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation
Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation
Weizheng Wang
Chao Yu
Yu Wang
Byung-Cheol Min
144
2
0
20 Sep 2024
Data-driven identification of latent port-Hamiltonian systems
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
26
2
0
15 Aug 2024
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified
  Port-Hamiltonian Models
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
Kaiyuan Tan
Peilun Li
Thomas Beckers
AI4CE
18
3
0
17 Jun 2024
Predicting Ship Responses in Different Seaways using a Generalizable
  Force Correcting Machine Learning Method
Predicting Ship Responses in Different Seaways using a Generalizable Force Correcting Machine Learning Method
K. Marlantes
P. Bandyk
Kevin J. Maki
19
3
0
13 May 2024
Neural Operators Meet Energy-based Theory: Operator Learning for
  Hamiltonian and Dissipative PDEs
Neural Operators Meet Energy-based Theory: Operator Learning for Hamiltonian and Dissipative PDEs
Yusuke Tanaka
Takaharu Yaguchi
Tomoharu Iwata
N. Ueda
AI4CE
37
0
0
14 Feb 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey
  on Structural Mechanics Applications
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
13
9
0
31 Oct 2023
Separable Hamiltonian Neural Networks
Separable Hamiltonian Neural Networks
Zi-Yu Khoo
Dawen Wu
Jonathan Sze Choong Low
Stéphane Bressan
20
1
0
03 Sep 2023
Deep Learning for Structure-Preserving Universal Stable Koopman-Inspired
  Embeddings for Nonlinear Canonical Hamiltonian Dynamics
Deep Learning for Structure-Preserving Universal Stable Koopman-Inspired Embeddings for Nonlinear Canonical Hamiltonian Dynamics
P. Goyal
Süleyman Yıldız
P. Benner
36
2
0
26 Aug 2023
How to Learn and Generalize From Three Minutes of Data:
  Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
  Equations
How to Learn and Generalize From Three Minutes of Data: Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential Equations
Franck Djeumou
Cyrus Neary
Ufuk Topcu
DiffM
24
8
0
10 Jun 2023
Reversible and irreversible bracket-based dynamics for deep graph neural
  networks
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
25
9
0
24 May 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty
  Quantification
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with
  Physics Prior
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
24
17
0
15 May 2023
Pseudo-Hamiltonian system identification
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
18
3
0
09 May 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output
  Error Noise Models
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Compositional Learning of Dynamical System Models Using Port-Hamiltonian
  Neural Networks
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
13
12
0
01 Dec 2022
Thermodynamics of learning physical phenomena
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Sølve Eidnes
Alexander J. Stasik
Camilla Sterud
Eivind Bøhn
S. Riemer-Sørensen
11
17
0
06 Jun 2022
Learning reversible symplectic dynamics
Learning reversible symplectic dynamics
Riccardo Valperga
K. Webster
Victoria G Klein
D. Turaev
J. Lamb
AI4CE
9
13
0
26 Apr 2022
Thermodynamics-informed graph neural networks
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
27
31
0
03 Mar 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
15
39
0
10 Feb 2022
Noether Networks: Meta-Learning Useful Conserved Quantities
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
70
26
0
06 Dec 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
16
58
0
21 Oct 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for
  Data-driven Modeling
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
24
0
11 Sep 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Hamiltonian neural networks for solving equations of motion
Hamiltonian neural networks for solving equations of motion
M. Mattheakis
David Sondak
Akshunna S. Dogra
P. Protopapas
19
56
0
29 Jan 2020
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,400
0
01 Dec 2016
1