Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.06658
Cited By
v1
v2
v3 (latest)
A Framework for Machine Learning of Model Error in Dynamical Systems
14 July 2021
Matthew E. Levine
Andrew M. Stuart
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Framework for Machine Learning of Model Error in Dynamical Systems"
19 / 19 papers shown
Title
Context parroting: A simple but tough-to-beat baseline for foundation models in scientific machine learning
Yuanzhao Zhang
William Gilpin
AI4TS
74
0
0
16 May 2025
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
153
2
0
28 Jan 2025
Structural Constraints for Physics-augmented Learning
Simon Kuang
Xinfan Lin
PINN
52
0
0
07 Oct 2024
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
258
8
0
24 Sep 2024
Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators
Chuwei Wang
Julius Berner
Zongyi Li
Di Zhou
Jiayun Wang
Jane Bae
Anima Anandkumar
AI4CE
80
3
0
09 Aug 2024
On the choice of the non-trainable internal weights in random feature maps
Pinak Mandal
Georg Gottwald
Nicholas Cranch
TPM
80
1
0
07 Aug 2024
Learning Optimal Filters Using Variational Inference
Enoch Luk
Eviatar Bach
Ricardo Baptista
Andrew Stuart
84
7
0
26 Jun 2024
Learning About Structural Errors in Models of Complex Dynamical Systems
Jin-Long Wu
Matthew E. Levine
Tapio Schneider
Andrew M. Stuart
AI4CE
82
18
0
29 Dec 2023
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
85
9
0
29 Dec 2023
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
66
10
0
27 Jan 2023
Catch-22s of reservoir computing
Yuanzhao Zhang
Sean P. Cornelius
89
13
0
18 Oct 2022
Stochastic Data-Driven Variational Multiscale Reduced Order Models
Fei Lu
Changhong Mou
Honghu Liu
T. Iliescu
61
0
0
06 Sep 2022
Quantum Mechanics for Closure of Dynamical Systems
D. Freeman
D. Giannakis
J. Slawinska
70
4
0
05 Aug 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
61
91
0
13 Apr 2022
Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
Megan R. Ebers
K. Steele
J. Nathan Kutz
85
16
0
10 Mar 2022
Robust Hybrid Learning With Expert Augmentation
Antoine Wehenkel
Jens Behrmann
Hsiang Hsu
Guillermo Sapiro
Gilles Louppe and
J. Jacobsen
79
8
0
08 Feb 2022
Physics-enhanced deep surrogates for partial differential equations
R. Pestourie
Youssef Mroueh
Chris Rackauckas
Payel Das
Steven G. Johnson
PINN
AI4CE
57
15
0
10 Nov 2021
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
87
16
0
01 Oct 2021
Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations
Georg Gottwald
Sebastian Reich
AI4CE
94
38
0
08 Aug 2021
1