ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.02425
  4. Cited By
GradDiv: Adversarial Robustness of Randomized Neural Networks via
  Gradient Diversity Regularization

GradDiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization

6 July 2021
Sungyoon Lee
Hoki Kim
Jaewook Lee
    AAML
ArXivPDFHTML

Papers citing "GradDiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization"

29 / 29 papers shown
Title
Learning Optimal Prompt Ensemble for Multi-source Visual Prompt Transfer
Learning Optimal Prompt Ensemble for Multi-source Visual Prompt Transfer
Enming Zhang
Liwen Cao
Yanru Wu
Zijie Zhao
Guan Wang
Yang Li
52
0
0
09 Apr 2025
Measuring Diversity in Synthetic Datasets
Measuring Diversity in Synthetic Datasets
Yuchang Zhu
Huizhe Zhang
Bingzhe Wu
Jintang Li
Zibin Zheng
Peilin Zhao
Liang Chen
Yatao Bian
100
0
0
12 Feb 2025
Bayesian Optimization with Preference Exploration by Monotonic Neural Network Ensemble
Bayesian Optimization with Preference Exploration by Monotonic Neural Network Ensemble
Hanyang Wang
Juergen Branke
Matthias Poloczek
107
0
0
30 Jan 2025
BayesNAM: Leveraging Inconsistency for Reliable Explanations
BayesNAM: Leveraging Inconsistency for Reliable Explanations
Hoki Kim
Jinseong Park
Yujin Choi
Seungyun Lee
Jaewook Lee
BDL
29
0
0
10 Nov 2024
Comparative Evaluation of Applicability Domain Definition Methods for
  Regression Models
Comparative Evaluation of Applicability Domain Definition Methods for Regression Models
Shakir Khurshid
Bharath Kumar Loganathan
Matthieu Duvinage
32
0
0
01 Nov 2024
MIRACLE3D: Memory-efficient Integrated Robust Approach for Continual Learning on Point Clouds via Shape Model Construction
MIRACLE3D: Memory-efficient Integrated Robust Approach for Continual Learning on Point Clouds via Shape Model Construction
Hossein Resani
B. Nasihatkon
3DV
142
0
0
08 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
Adversarially Robust Industrial Anomaly Detection Through Diffusion
  Model
Adversarially Robust Industrial Anomaly Detection Through Diffusion Model
Yuanpu Cao
Lu Lin
Jinghui Chen
DiffM
26
1
0
09 Aug 2024
Improving Adversarial Robustness via Decoupled Visual Representation
  Masking
Improving Adversarial Robustness via Decoupled Visual Representation Masking
Decheng Liu
Tao Chen
Chunlei Peng
Nannan Wang
Ruimin Hu
Xinbo Gao
AAML
51
1
0
16 Jun 2024
Learning from Uncertain Data: From Possible Worlds to Possible Models
Learning from Uncertain Data: From Possible Worlds to Possible Models
Jiongli Zhu
Su Feng
Boris Glavic
Babak Salimi
37
0
0
28 May 2024
Boosting Model Resilience via Implicit Adversarial Data Augmentation
Boosting Model Resilience via Implicit Adversarial Data Augmentation
Xiaoling Zhou
Wei Ye
Zhemg Lee
Rui Xie
Shi-Bo Zhang
44
1
0
25 Apr 2024
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Youngkyoung Bae
Seungwoong Ha
Hawoong Jeong
73
2
0
02 Feb 2024
BlackboxBench: A Comprehensive Benchmark of Black-box Adversarial
  Attacks
BlackboxBench: A Comprehensive Benchmark of Black-box Adversarial Attacks
Meixi Zheng
Xuanchen Yan
Zihao Zhu
Hongrui Chen
Baoyuan Wu
ELM
MLAU
AAML
34
8
0
28 Dec 2023
NEO-KD: Knowledge-Distillation-Based Adversarial Training for Robust
  Multi-Exit Neural Networks
NEO-KD: Knowledge-Distillation-Based Adversarial Training for Robust Multi-Exit Neural Networks
Seokil Ham
Jun-Gyu Park
Dong-Jun Han
Jaekyun Moon
AAML
16
4
0
01 Nov 2023
Data Optimization in Deep Learning: A Survey
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
38
1
0
25 Oct 2023
Advancing Audio Emotion and Intent Recognition with Large Pre-Trained
  Models and Bayesian Inference
Advancing Audio Emotion and Intent Recognition with Large Pre-Trained Models and Bayesian Inference
Dejan Porjazovski
Yaroslav Getman
Tamás Grósz
M. Kurimo
30
3
0
16 Oct 2023
On Continuity of Robust and Accurate Classifiers
On Continuity of Robust and Accurate Classifiers
R. Barati
Reza Safabakhsh
Mohammad Rahmati
AAML
10
1
0
29 Sep 2023
Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey
  of Vulnerabilities, Datasets, and Defenses
Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses
M. Ferrag
Othmane Friha
B. Kantarci
Norbert Tihanyi
Lucas C. Cordeiro
Merouane Debbah
Djallel Hamouda
Muna Al-Hawawreh
K. Choo
25
43
0
17 Jun 2023
Uncertainty Aware Neural Network from Similarity and Sensitivity
Uncertainty Aware Neural Network from Similarity and Sensitivity
H. M. D. Kabir
S. Mondal
Sadia Khanam
Abbas Khosravi
Shafin Rahman
...
R. Alizadehsani
Houshyar Asadi
Shady M. K. Mohamed
Saeid Nahavandi
Usha R. Acharya
AAML
28
4
0
27 Apr 2023
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep
  Neural Networks: The Case of Reject Option and Post-training Processing
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training Processing
M. Hasan
Moloud Abdar
Abbas Khosravi
U. Aickelin
Pietro Lio
Ibrahim Hossain
Ashikur Rahman
Saeid Nahavandi
35
4
0
11 Apr 2023
On the role of Model Uncertainties in Bayesian Optimization
On the role of Model Uncertainties in Bayesian Optimization
Jonathan Foldager
Mikkel Jordahn
Lars Kai Hansen
Michael Riis Andersen
19
4
0
14 Jan 2023
Ares: A System-Oriented Wargame Framework for Adversarial ML
Ares: A System-Oriented Wargame Framework for Adversarial ML
Farhan Ahmed
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
AAML
23
7
0
24 Oct 2022
BayesNetCNN: incorporating uncertainty in neural networks for
  image-based classification tasks
BayesNetCNN: incorporating uncertainty in neural networks for image-based classification tasks
Matteo Ferrante
T. Boccato
N. Toschi
BDL
UQCV
11
0
0
27 Sep 2022
Attacking Adversarial Defences by Smoothing the Loss Landscape
Attacking Adversarial Defences by Smoothing the Loss Landscape
Panagiotis Eustratiadis
Henry Gouk
Da Li
Timothy M. Hospedales
AAML
22
4
0
01 Aug 2022
Gradient Obfuscation Checklist Test Gives a False Sense of Security
Gradient Obfuscation Checklist Test Gives a False Sense of Security
Nikola Popovic
D. Paudel
Thomas Probst
Luc Van Gool
AAML
36
6
0
03 Jun 2022
How Sampling Impacts the Robustness of Stochastic Neural Networks
How Sampling Impacts the Robustness of Stochastic Neural Networks
Sina Daubener
Asja Fischer
SILM
AAML
20
1
0
22 Apr 2022
Improving the Behaviour of Vision Transformers with Token-consistent
  Stochastic Layers
Improving the Behaviour of Vision Transformers with Token-consistent Stochastic Layers
Nikola Popovic
D. Paudel
Thomas Probst
Luc Van Gool
34
1
0
30 Dec 2021
The art of defense: letting networks fool the attacker
The art of defense: letting networks fool the attacker
Jinlai Zhang
Lyvjie Chen
Binbin Liu
Bojun Ouyang
Jihong Zhu
Minchi Kuang
Houqing Wang
Yanmei Meng
AAML
3DPC
17
15
0
07 Apr 2021
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
162
1,123
0
25 Jul 2012
1