Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.15397
Cited By
Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines
26 June 2021
Nikolay O. Nikitin
Pavel Vychuzhanin
M. Sarafanov
Iana S. Polonskaia
I. Revin
Irina V. Barabanova
G. Maximov
Anna V. Kaluzhnaya
A. Boukhanovsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines"
16 / 16 papers shown
Title
SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Wonduk Seo
Juhyeon Lee
Yi Bu
48
0
0
30 Mar 2025
Online Meta-learning for AutoML in Real-time (OnMAR)
Mia Gerber
Anna Sergeevna Bosman
J. D. Villiers
OffRL
41
0
0
27 Feb 2025
Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey
Yang Gu
Hengyu You
Jian Cao
Muran Yu
Haoran Fan
Shiyou Qian
LM&MA
AI4CE
46
3
0
11 Nov 2024
Automated data processing and feature engineering for deep learning and big data applications: a survey
A. Mumuni
F. Mumuni
TPM
40
48
0
18 Mar 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
65
5
0
13 Mar 2024
Forecasting Imports in OECD Member Countries and Iran by Using Neural Network Algorithms of LSTM
S. Khajoui
Saeid Dehyadegari
S. A. Jalaee
11
0
0
06 Jan 2024
Integration Of Evolutionary Automated Machine Learning With Structural Sensitivity Analysis For Composite Pipelines
Nikolay O. Nikitin
Maiia Pinchuk
Valerii Pokrovskii
Peter Shevchenko
Andrey Getmanov
Yaroslav Aksenkin
I. Revin
Andrey Stebenkov
Ekaterina Poslavskaya
Anna V. Kaluzhnaya
26
0
0
22 Dec 2023
A knowledge-driven AutoML architecture
C. Cofaru
Johan Loeckx
23
0
0
28 Nov 2023
Tracing and Visualizing Human-ML/AI Collaborative Processes through Artifacts of Data Work
Jennifer Rogers
Anamaria Crisan
18
7
0
05 Apr 2023
Challenges and Practices of Deep Learning Model Reengineering: A Case Study on Computer Vision
Wenxin Jiang
Vishnu Banna
Naveen Vivek
Abhinav Goel
Nicholas Synovic
George K. Thiruvathukal
James C. Davis
VLM
40
18
0
13 Mar 2023
Improvement of Computational Performance of Evolutionary AutoML in a Heterogeneous Environment
Nikolay O. Nikitin
Sergey Teryoshkin
Valerii Pokrovskii
Sergey Pakulin
D. Nasonov
26
1
0
12 Jan 2023
On the balance between the training time and interpretability of neural ODE for time series modelling
Yakov Golovanev
A. Hvatov
AI4TS
19
1
0
07 Jun 2022
Hybrid and Automated Machine Learning Approaches for Oil Fields Development: the Case Study of Volve Field, North Sea
Nikolay O. Nikitin
I. Revin
A. Hvatov
Pavel Vychuzhanin
Anna V. Kaluzhnaya
13
19
0
03 Mar 2021
Automated data-driven approach for gap filling in the time series using evolutionary learning
M. Sarafanov
Nikolay O. Nikitin
Anna V. Kaluzhnaya
AI4TS
11
3
0
01 Mar 2021
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
53
91
0
13 Jan 2021
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
97
607
0
13 Mar 2020
1