Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.13329
Cited By
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
24 June 2021
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Covariance-Aware Private Mean Estimation Without Private Covariance Estimation"
43 / 43 papers shown
Title
Optimal Differentially Private Sampling of Unbounded Gaussians
Valentio Iverson
Gautam Kamath
Argyris Mouzakis
46
0
0
03 Mar 2025
Tukey Depth Mechanisms for Practical Private Mean Estimation
Gavin Brown
Lydia Zakynthinou
43
0
0
25 Feb 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Clément Lalanne
Jean-Michel Loubes
David Rodríguez-Vítores
FedML
43
0
0
03 Feb 2025
Dimension-free Private Mean Estimation for Anisotropic Distributions
Yuval Dagan
Michael I. Jordan
Xuelin Yang
Lydia Zakynthinou
Nikita Zhivotovskiy
39
2
0
01 Nov 2024
Privately Learning Smooth Distributions on the Hypercube by Projections
Clément Lalanne
Sébastien Gadat
30
1
0
16 Sep 2024
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
40
2
0
19 Aug 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
34
2
0
25 Jun 2024
Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares
Gavin Brown
J. Hayase
Samuel B. Hopkins
Weihao Kong
Xiyang Liu
Sewoong Oh
Juan C. Perdomo
Adam D. Smith
24
1
0
23 Apr 2024
Differentially private projection-depth-based medians
Kelly Ramsay
Dylan Spicker
13
2
0
12 Dec 2023
Statistical Barriers to Affine-equivariant Estimation
Zihao Chen
Yeshwanth Cherapanamjeri
56
0
0
16 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
19
9
0
10 Oct 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
32
5
0
07 Sep 2023
PLAN: Variance-Aware Private Mean Estimation
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
26
4
0
14 Jun 2023
Better Private Linear Regression Through Better Private Feature Selection
Travis Dick
Jennifer Gillenwater
Matthew Joseph
11
2
0
01 Jun 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
31
9
0
13 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
From Robustness to Privacy and Back
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
28
27
0
03 Feb 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
27
17
0
28 Jan 2023
A Fast Algorithm for Adaptive Private Mean Estimation
John C. Duchi
Saminul Haque
Rohith Kuditipudi
FedML
24
15
0
17 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
66
0
0
15 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
18
49
0
09 Dec 2022
Scalable Collaborative Learning via Representation Sharing
Frédéric Berdoz
Abhishek Singh
Martin Jaggi
Ramesh Raskar
FedML
22
3
0
20 Nov 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
33
21
0
01 Nov 2022
Differentially private multivariate medians
Kelly Ramsay
Aukosh Jagannath
Shojaéddin Chenouri
20
4
0
12 Oct 2022
Easy Differentially Private Linear Regression
Kareem Amin
Matthew Joseph
Mónica Ribero
Sergei Vassilvitskii
FedML
18
16
0
15 Aug 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Jayshree Sarathy
Salil P. Vadhan
23
7
0
27 Jul 2022
Differentially Private Partial Set Cover with Applications to Facility Location
George Z. Li
Dung Nguyen
A. Vullikanti
21
4
0
21 Jul 2022
(Nearly) Optimal Private Linear Regression via Adaptive Clipping
Prateeksha Varshney
Abhradeep Thakurta
Prateek Jain
38
8
0
11 Jul 2022
"You Can't Fix What You Can't Measure": Privately Measuring Demographic Performance Disparities in Federated Learning
Marc Juárez
Aleksandra Korolova
FedML
32
9
0
24 Jun 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
35
21
0
27 May 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
34
26
0
17 May 2022
Differentially Private Regression with Unbounded Covariates
Jason Milionis
Alkis Kalavasis
Dimitris Fotakis
Stratis Ioannidis
23
10
0
19 Feb 2022
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
19
45
0
07 Dec 2021
Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
FedML
24
60
0
25 Nov 2021
Private and polynomial time algorithms for learning Gaussians and beyond
H. Ashtiani
Christopher Liaw
55
44
0
22 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
55
39
0
08 Nov 2021
Universal Private Estimators
Wei Dong
K. Yi
16
19
0
04 Nov 2021
Instance-optimal Mean Estimation Under Differential Privacy
Ziyue Huang
Yuting Liang
K. Yi
13
57
0
01 Jun 2021
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
53
75
0
18 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
247
80
0
11 Dec 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
1