ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12594
  4. Cited By
Real-time gravitational-wave science with neural posterior estimation

Real-time gravitational-wave science with neural posterior estimation

23 June 2021
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
ArXivPDFHTML

Papers citing "Real-time gravitational-wave science with neural posterior estimation"

45 / 45 papers shown
Title
Robust Simulation-Based Inference under Missing Data via Neural Processes
Yogesh Verma
Ayush Bharti
Vikas K. Garg
68
0
0
03 Mar 2025
Simulation-based Inference for Cardiovascular Models
Simulation-based Inference for Cardiovascular Models
Antoine Wehenkel
Laura Manduchi
Jens Behrmann
Guillermo Sapiro
Andrew C. Miller
Marco Cuturi
Ozan Sener
Marco Cuturi
J. Jacobsen
109
9
0
31 Dec 2024
Compositional simulation-based inference for time series
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
45
1
0
05 Nov 2024
Full-waveform earthquake source inversion using simulation-based inference
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
40
0
0
30 Oct 2024
Flow Matching for Posterior Inference with Simulator Feedback
Flow Matching for Posterior Inference with Simulator Feedback
Benjamin Holzschuh
Nils Thuerey
35
0
0
29 Oct 2024
Accelerated Bayesian parameter estimation and model selection for
  gravitational waves with normalizing flows
Accelerated Bayesian parameter estimation and model selection for gravitational waves with normalizing flows
Alicja Polanska
Thibeau Wouters
Peter T. H. Pang
Kaze K. W. Wong
Jason D. McEwen
31
1
0
28 Oct 2024
Rapid Likelihood Free Inference of Compact Binary Coalescences using
  Accelerated Hardware
Rapid Likelihood Free Inference of Compact Binary Coalescences using Accelerated Hardware
Deep Chatterjee
Ethan Marx
W. Benoit
Ravi Kumar
Malina Desai
...
M. Saleem
Shrey Aggarwal
Michael W. Coughlin
Philip C. Harris
E. Katsavounidis
38
0
0
26 Jul 2024
Fast and Reliable Probabilistic Reflectometry Inversion with
  Prior-Amortized Neural Posterior Estimation
Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation
V. Starostin
Maximilian Dax
A. Gerlach
A. Hinderhofer
Álvaro Tejero-Cantero
Frank Schreiber
24
0
0
26 Jul 2024
Real-time gravitational-wave inference for binary neutron stars using
  machine learning
Real-time gravitational-wave inference for binary neutron stars using machine learning
Maximilian Dax
Stephen R. Green
J. Gair
N. Gupte
M. Purrer
Vivien Raymond
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Scholkopf
21
9
0
12 Jul 2024
Preconditioned Neural Posterior Estimation for Likelihood-free Inference
Preconditioned Neural Posterior Estimation for Likelihood-free Inference
Xiaoyu Wang
Ryan P. Kelly
D. Warne
Christopher C. Drovandi
37
4
0
21 Apr 2024
All-in-one simulation-based inference
All-in-one simulation-based inference
Manuel Gloeckler
Michael Deistler
Christian Weilbach
Frank D. Wood
Jakob H. Macke
34
26
0
15 Apr 2024
Optimizing Likelihood-free Inference using Self-supervised Neural
  Symmetry Embeddings
Optimizing Likelihood-free Inference using Self-supervised Neural Symmetry Embeddings
D. Chatterjee
Philip C. Harris
Maanas Goel
Malina Desai
Michael W. Coughlin
E. Katsavounidis
31
1
0
11 Dec 2023
Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
  nbi
Stellar Spectra Fitting with Amortized Neural Posterior Estimation and nbi
Keming 名 Zhang 张 可
Tharindu Jayasinghe
Joshua S. Bloom
18
1
0
09 Dec 2023
Consistency Models for Scalable and Fast Simulation-Based Inference
Consistency Models for Scalable and Fast Simulation-Based Inference
Marvin Schmitt
Valentin Pratz
Ullrich Kothe
Paul-Christian Bürkner
Stefan T. Radev
29
9
0
09 Dec 2023
nbi: the Astronomer's Package for Neural Posterior Estimation
nbi: the Astronomer's Package for Neural Posterior Estimation
Keming 名 Zhang 张 可
Joshua S. Bloom
Stéfan van der Walt
N. Hernitschek
19
3
0
06 Dec 2023
Simulation-based stacking
Simulation-based stacking
Yuling Yao
Bruno Régaldo-Saint Blancard
Justin Domke
33
4
0
25 Oct 2023
Hyperparameter optimization of hp-greedy reduced basis for gravitational
  wave surrogates
Hyperparameter optimization of hp-greedy reduced basis for gravitational wave surrogates
F. Cerino
J. A. D. Pace
Emmanuel A. Tassone
M. Tiglio
Atuel Villegas
16
0
0
23 Oct 2023
Sensitivity-Aware Amortized Bayesian Inference
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
23
7
0
17 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian
  Inference
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
35
5
0
06 Oct 2023
Simulation-based Inference with the Generalized Kullback-Leibler
  Divergence
Simulation-based Inference with the Generalized Kullback-Leibler Divergence
Benjamin Kurt Miller
Marco Federici
Christoph Weniger
Patrick Forré
34
4
0
03 Oct 2023
Simulation-based inference using surjective sequential neural likelihood
  estimation
Simulation-based inference using surjective sequential neural likelihood estimation
Simon Dirmeier
Carlo Albert
Fernando Perez-Cruz
28
6
0
02 Aug 2023
L-C2ST: Local Diagnostics for Posterior Approximations in
  Simulation-Based Inference
L-C2ST: Local Diagnostics for Posterior Approximations in Simulation-Based Inference
J. Linhart
Alexandre Gramfort
Pedro L. C. Rodrigues
30
6
0
06 Jun 2023
Flow Matching for Scalable Simulation-Based Inference
Flow Matching for Scalable Simulation-Based Inference
Maximilian Dax
J. Wildberger
Simon Buchholz
Stephen R. Green
Jakob H. Macke
Bernhard Schölkopf
29
48
0
26 May 2023
Are Deep Neural Networks Adequate Behavioural Models of Human Visual
  Perception?
Are Deep Neural Networks Adequate Behavioural Models of Human Visual Perception?
Felix Wichmann
Robert Geirhos
32
25
0
26 May 2023
Adversarial robustness of amortized Bayesian inference
Adversarial robustness of amortized Bayesian inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
AAML
27
13
0
24 May 2023
Discriminative calibration: Check Bayesian computation from simulations
  and flexible classifier
Discriminative calibration: Check Bayesian computation from simulations and flexible classifier
Yuling Yao
Justin Domke
UQLM
22
2
0
24 May 2023
AI for Science: An Emerging Agenda
AI for Science: An Emerging Agenda
Philipp Berens
Kyle Cranmer
Neil D. Lawrence
U. V. Luxburg
Jessica Montgomery
35
4
0
07 Mar 2023
Sampling-Based Accuracy Testing of Posterior Estimators for General
  Inference
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Pablo Lemos
A. Coogan
Y. Hezaveh
Laurence Perreault Levasseur
40
30
0
06 Feb 2023
Topological Learning in Multi-Class Data Sets
Topological Learning in Multi-Class Data Sets
Christopher H. Griffin
Trevor K. Karn
Benjamin Apple
AI4CE
22
0
0
23 Jan 2023
Adapting to noise distribution shifts in flow-based gravitational-wave
  inference
Adapting to noise distribution shifts in flow-based gravitational-wave inference
J. Wildberger
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
AI4CE
21
9
0
16 Nov 2022
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
Andreas Munk
A. Mead
Frank D. Wood
17
2
0
21 Oct 2022
Machine-Learning Love: classifying the equation of state of neutron
  stars with Transformers
Machine-Learning Love: classifying the equation of state of neutron stars with Transformers
Gonçalo Gonçalves
Márcio Ferreira
João Aveiro
António Onofre
F. F. Freitas
C. Providência
J. Font
24
5
0
15 Oct 2022
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
  Inference
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
BDL
27
55
0
11 Oct 2022
Truncated proposals for scalable and hassle-free simulation-based
  inference
Truncated proposals for scalable and hassle-free simulation-based inference
Michael Deistler
P. J. Gonçalves
Jakob H Macke
32
48
0
10 Oct 2022
DeepSNR: A deep learning foundation for offline gravitational wave
  detection
DeepSNR: A deep learning foundation for offline gravitational wave detection
Michael Andrews
M. Paulini
Luke Sellers
Alexey Bobrick
Gianni Martire
Haydn Vestal
OffRL
16
6
0
11 Jul 2022
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
30
45
0
01 Apr 2022
Machine Learning and Cosmology
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
29
12
0
15 Mar 2022
Inference-optimized AI and high performance computing for gravitational
  wave detection at scale
Inference-optimized AI and high performance computing for gravitational wave detection at scale
Pranshu Chaturvedi
Asad Khan
Minyang Tian
Eliu A. Huerta
Huihuo Zheng
13
29
0
26 Jan 2022
AI and extreme scale computing to learn and infer the physics of higher
  order gravitational wave modes of quasi-circular, spinning, non-precessing
  binary black hole mergers
AI and extreme scale computing to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non-precessing binary black hole mergers
Asad Khan
E. A. H. abd
Prayush Kumar
21
6
0
13 Dec 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal
  Neural Ratio Estimation
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
36
40
0
15 Nov 2021
Learn-Morph-Infer: a new way of solving the inverse problem for brain
  tumor modeling
Learn-Morph-Infer: a new way of solving the inverse problem for brain tumor modeling
Ivan Ezhov
Kevin Scibilia
Katharina Franitza
Felix Steinbauer
Suprosanna Shit
...
Diana Waldmannstetter
M. Menten
M. Metz
Benedikt Wiestler
Bjoern H. Menze
52
26
0
07 Nov 2021
Swift sky localization of gravitational waves using deep learning seeded
  importance sampling
Swift sky localization of gravitational waves using deep learning seeded importance sampling
A. Kolmus
G. Baltus
J. Janquart
Twan van Laarhoven
S. Caudill
Tom Heskes
BDL
16
8
0
01 Nov 2021
Interpretable AI forecasting for numerical relativity waveforms of
  quasi-circular, spinning, non-precessing binary black hole mergers
Interpretable AI forecasting for numerical relativity waveforms of quasi-circular, spinning, non-precessing binary black hole mergers
Asad Khan
Eliu A. Huerta
Huihuo Zheng
26
11
0
13 Oct 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
39
37
0
02 Jul 2021
1