Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.12535
Cited By
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
23 June 2021
Valentina Zantedeschi
Paul Viallard
Emilie Morvant
Rémi Emonet
Amaury Habrard
Pascal Germain
Benjamin Guedj
FedML
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound"
22 / 22 papers shown
Title
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
77
3
0
26 Apr 2024
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
50
4
0
06 Sep 2022
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound
Paul Viallard
Pascal Germain
Amaury Habrard
Emilie Morvant
13
6
0
28 Apr 2021
A General Framework for the Practical Disintegration of PAC-Bayesian Bounds
Paul Viallard
Pascal Germain
Amaury Habrard
Emilie Morvant
UQCV
57
15
0
17 Feb 2021
Tighter risk certificates for neural networks
Maria Perez-Ortiz
Omar Rivasplata
John Shawe-Taylor
Csaba Szepesvári
UQCV
58
105
0
25 Jul 2020
Second Order PAC-Bayesian Bounds for the Weighted Majority Vote
A. Masegosa
S. Lorenzen
Christian Igel
Yevgeny Seldin
72
40
0
01 Jul 2020
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
70
80
0
23 Jun 2020
On the role of data in PAC-Bayes bounds
Gintare Karolina Dziugaite
Kyle Hsu
W. Gharbieh
Gabriel Arpino
Daniel M. Roy
49
78
0
19 Jun 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
211
42,038
0
03 Dec 2019
PAC-Bayes Un-Expected Bernstein Inequality
Zakaria Mhammedi
Peter Grünwald
Benjamin Guedj
42
47
0
31 May 2019
A Primer on PAC-Bayesian Learning
Benjamin Guedj
72
221
0
16 Jan 2019
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
15
34
0
29 Oct 2018
On PAC-Bayesian Bounds for Random Forests
S. Lorenzen
Christian Igel
Yevgeny Seldin
16
13
0
23 Oct 2018
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
119
110
0
05 Jun 2018
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
82
231
0
22 May 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
127
8,807
0
25 Aug 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
74
808
0
31 Mar 2017
A Strongly Quasiconvex PAC-Bayesian Bound
Niklas Thiemann
Christian Igel
Olivier Wintenberger
Yevgeny Seldin
30
83
0
19 Aug 2016
On the properties of variational approximations of Gibbs posteriors
Pierre Alquier
James Ridgway
Nicolas Chopin
75
253
0
12 Jun 2015
Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
Pascal Germain
A. Lacasse
François Laviolette
M. Marchand
Jean-Francis Roy
33
142
0
28 Mar 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
678
149,474
0
22 Dec 2014
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
223
458
0
03 Dec 2007
1