ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12472
  4. Cited By
Finding simplicity: unsupervised discovery of features, patterns, and
  order parameters via shift-invariant variational autoencoders

Finding simplicity: unsupervised discovery of features, patterns, and order parameters via shift-invariant variational autoencoders

23 June 2021
M. Ziatdinov
C. Wong
Sergei V. Kalinin
    OOD
ArXiv (abs)PDFHTML

Papers citing "Finding simplicity: unsupervised discovery of features, patterns, and order parameters via shift-invariant variational autoencoders"

11 / 11 papers shown
Title
Robust Feature Disentanglement in Imaging Data via Joint Invariant
  Variational Autoencoders: from Cards to Atoms
Robust Feature Disentanglement in Imaging Data via Joint Invariant Variational Autoencoders: from Cards to Atoms
M. Ziatdinov
Sergei V. Kalinin
DRL
27
6
0
20 Apr 2021
Ensemble learning and iterative training (ELIT) machine learning:
  applications towards uncertainty quantification and automated experiment in
  atom-resolved microscopy
Ensemble learning and iterative training (ELIT) machine learning: applications towards uncertainty quantification and automated experiment in atom-resolved microscopy
Ayana Ghosh
B. Sumpter
Ondrej Dyck
Sergei V. Kalinin
M. Ziatdinov
OOD
27
5
0
21 Jan 2021
Explicitly disentangling image content from translation and rotation
  with spatial-VAE
Explicitly disentangling image content from translation and rotation with spatial-VAE
Tristan Bepler
Ellen D. Zhong
Kotaro Kelley
E. Brignole
Bonnie Berger
CoGeDRL
56
74
0
25 Sep 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
89
2,359
0
06 Jun 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRLCMLCoGe
94
124
0
03 May 2019
Making Convolutional Networks Shift-Invariant Again
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
93
798
0
25 Apr 2019
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCLDRL
103
480
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
124
1,471
0
29 Nov 2018
Exploring the Landscape of Spatial Robustness
Exploring the Landscape of Spatial Robustness
Logan Engstrom
Brandon Tran
Dimitris Tsipras
Ludwig Schmidt
Aleksander Madry
AAML
78
363
0
07 Dec 2017
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,923
0
20 Dec 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
269
12,456
0
24 Jun 2012
1