ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11753
  4. Cited By
Symplectic Learning for Hamiltonian Neural Networks

Symplectic Learning for Hamiltonian Neural Networks

22 June 2021
M. David
Florian Méhats
ArXivPDFHTML

Papers citing "Symplectic Learning for Hamiltonian Neural Networks"

18 / 18 papers shown
Title
Learning Generalized Hamiltonians using fully Symplectic Mappings
Learning Generalized Hamiltonians using fully Symplectic Mappings
Harsh Choudhary
Chandan Gupta
Vyacheslav kungrutsev
Melvin Leok
Georgios Korpas
54
0
0
17 Sep 2024
On the approximation of functions by tanh neural networks
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
48
138
0
18 Apr 2021
Data-driven Prediction of General Hamiltonian Dynamics via Learning
  Exactly-Symplectic Maps
Data-driven Prediction of General Hamiltonian Dynamics via Learning Exactly-Symplectic Maps
Ren-Chuen Chen
Molei Tao
46
51
0
09 Mar 2021
Nonseparable Symplectic Neural Networks
Nonseparable Symplectic Neural Networks
S. Xiong
Yunjin Tong
Xingzhe He
Shuqi Yang
Cheng Yang
Bo Zhu
67
34
0
23 Oct 2020
Sparse Symplectically Integrated Neural Networks
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
33
31
0
10 Jun 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
170
435
0
10 Mar 2020
Deep Network Approximation for Smooth Functions
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
97
247
0
09 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
444
42,393
0
03 Dec 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
59
217
0
30 Sep 2019
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
205
224
0
29 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
86
271
0
26 Sep 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
118
893
0
04 Jun 2019
Machine Learning for Fluid Mechanics
Machine Learning for Fluid Mechanics
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CE
PINN
83
2,115
0
27 May 2019
EM-like Learning Chaotic Dynamics from Noisy and Partial Observations
EM-like Learning Chaotic Dynamics from Noisy and Partial Observations
Duong Nguyen
Said Ouala
Lucas Drumetz
Ronan Fablet
52
29
0
25 Mar 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
399
5,099
0
19 Jun 2018
Latent-space Physics: Towards Learning the Temporal Evolution of Fluid
  Flow
Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow
S. Wiewel
M. Becher
N. Thürey
AI4CE
78
275
0
27 Feb 2018
Deep Learning for Physical Processes: Incorporating Prior Scientific
  Knowledge
Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge
Emmanuel de Bézenac
Arthur Pajot
Patrick Gallinari
PINN
AI4CE
107
318
0
21 Nov 2017
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
1