ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09575
  4. Cited By
Rotation Invariant Graph Neural Networks using Spin Convolutions

Rotation Invariant Graph Neural Networks using Spin Convolutions

17 June 2021
Muhammed Shuaibi
Adeesh Kolluru
Abhishek Das
Aditya Grover
Anuroop Sriram
Zachary W. Ulissi
C. L. Zitnick
    AI4CE
ArXivPDFHTML

Papers citing "Rotation Invariant Graph Neural Networks using Spin Convolutions"

45 / 45 papers shown
Title
MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
Yanjie Cui
Xiaohong Liu
Jing Liang
Yamin Fu
59
1
0
17 Jan 2025
Bridging Geometric States via Geometric Diffusion Bridge
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
37
0
0
31 Oct 2024
Distribution Learning for Molecular Regression
Distribution Learning for Molecular Regression
Nima Shoghi
Pooya Shoghi
Anuroop Sriram
Abhishek Das
OOD
27
0
0
30 Jul 2024
Hashing based Contrastive Learning for Virtual Screening
Hashing based Contrastive Learning for Virtual Screening
Jin Han
Yun Hong
Wu-Jun Li
18
0
0
29 Jul 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
Baking Symmetry into GFlowNets
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Yoshua Bengio
Dinghuai Zhang
45
8
0
08 Jun 2024
MolBind: Multimodal Alignment of Language, Molecules, and Proteins
MolBind: Multimodal Alignment of Language, Molecules, and Proteins
Teng Xiao
Chao Cui
Huaisheng Zhu
V. Honavar
AI4CE
34
7
0
13 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular
  Property Prediction: A Systematic Survey
Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey
Taojie Kuang
Pengfei Liu
Zhixiang Ren
AI4CE
47
1
0
11 Feb 2024
Accelerating Material Property Prediction using Generically Complete
  Isometry Invariants
Accelerating Material Property Prediction using Generically Complete Isometry Invariants
Jonathan Balasingham
Viktor Zamaraev
V. Kurlin
14
5
0
22 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt
  Tensor Products
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
30
19
0
18 Jan 2024
PerCNet: Periodic Complete Representation for Crystal Graphs
PerCNet: Periodic Complete Representation for Crystal Graphs
Jiao Huang
Qianli Xing
Jinglong Ji
Bo Yang
34
1
0
03 Dec 2023
Gradual Optimization Learning for Conformational Energy Minimization
Gradual Optimization Learning for Conformational Energy Minimization
Artem Tsypin
L. Ugadiarov
Kuzma Khrabrov
Alexander Telepov
Egor Rumiantsev
Alexey Skrynnik
Aleksandr I. Panov
Dmitry Vetrov
E. Tutubalina
Artur Kadurin
24
1
0
05 Nov 2023
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct
  Air Capture
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
27
35
0
01 Nov 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham
  Charge-Density Approach
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
24
3
0
28 Oct 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
26
131
0
21 Jun 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
54
0
28 Apr 2023
3D Molecular Generation via Virtual Dynamics
3D Molecular Generation via Virtual Dynamics
Shuqi Lu
Lin Yao
X. Chen
Hang Zheng
Di He
Guolin Ke
DiffM
26
7
0
12 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
31
79
0
07 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System
  modeling
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
24
6
0
02 Feb 2023
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
29
44
0
29 Nov 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated
  Catalyst Design
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
33
7
0
22 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
29
2
0
14 Nov 2022
Why self-attention is Natural for Sequence-to-Sequence Problems? A
  Perspective from Symmetries
Why self-attention is Natural for Sequence-to-Sequence Problems? A Perspective from Symmetries
Chao Ma
Lexing Ying
22
2
0
13 Oct 2022
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular
  Simulation
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation
Duoduo Zhang
Hangrui Bi
Fu-Zhi Dai
Wanrun Jiang
Linfeng Zhang
Han Wang
AI4CE
32
37
0
17 Aug 2022
Boosting Heterogeneous Catalyst Discovery by Structurally Constrained
  Deep Learning Models
Boosting Heterogeneous Catalyst Discovery by Structurally Constrained Deep Learning Models
A. Korovin
Innokentiy S. Humonen
A. Samtsevich
R. Eremin
Artem I. Vasilyev
V. Lazarev
S. Budennyy
GNN
14
5
0
11 Jul 2022
Spherical Channels for Modeling Atomic Interactions
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
58
0
29 Jun 2022
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance
  Matching
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching
Shengchao Liu
Hongyu Guo
Jian Tang
23
77
0
27 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
80
215
0
23 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
172
0
17 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffM
AI4CE
15
121
0
31 May 2022
FINETUNA: Fine-tuning Accelerated Molecular Simulations
FINETUNA: Fine-tuning Accelerated Molecular Simulations
Joseph Musielewicz
Xiaoxiao Wang
Tian Tian
Zachary W. Ulissi
19
32
0
02 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
33
66
0
06 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
31
86
0
28 Mar 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
30
27
0
18 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
42
65
0
09 Mar 2022
GeoDiff: a Geometric Diffusion Model for Molecular Conformation
  Generation
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu
Lantao Yu
Yang Song
Chence Shi
Stefano Ermon
Jian Tang
BDL
DiffM
24
496
0
06 Mar 2022
An Empirical Study of Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
8
0
0
28 Feb 2022
AlphaDesign: A graph protein design method and benchmark on AlphaFoldDB
AlphaDesign: A graph protein design method and benchmark on AlphaFoldDB
Zhangyang Gao
Cheng Tan
Stan Z. Li
144
52
0
01 Feb 2022
Crystal Diffusion Variational Autoencoder for Periodic Material
  Generation
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
212
232
0
12 Oct 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
24
434
0
02 Jun 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
503
0
20 Oct 2020
1