Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.09004
Cited By
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning
10 June 2021
Felix Dietrich
Alexei Makeev
George A. Kevrekidis
N. Evangelou
Tom S. Bertalan
Sebastian Reich
Ioannis G. Kevrekidis
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning"
19 / 19 papers shown
Title
A Robust Model-Based Approach for Continuous-Time Policy Evaluation with Unknown Lévy Process Dynamics
Qihao Ye
Xiaochuan Tian
Yuhua Zhu
36
1
0
02 Apr 2025
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
80
0
0
30 Mar 2025
Non-parametric Inference for Diffusion Processes: A Computational Approach via Bayesian Inversion for PDEs
Maximilian Kruse
Sebastian Krumscheid
26
0
0
04 Nov 2024
Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems
Yuán Chen
Dongbin Xiu
34
0
0
27 Aug 2024
Feynman-Kac Operator Expectation Estimator
Jingyuan Li
Wei Liu
38
0
0
02 Jul 2024
RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators
Gianluca Fabiani
Ioannis G. Kevrekidis
Constantinos Siettos
A. Yannacopoulos
27
11
0
08 Jun 2024
MD-NOMAD: Mixture density nonlinear manifold decoder for emulating stochastic differential equations and uncertainty propagation
Akshay Thakur
Souvik Chakraborty
42
1
0
24 Apr 2024
Stochastic parameter reduced-order model based on hybrid machine learning approaches
Cheng Fang
Jinqiao Duan
25
0
0
24 Mar 2024
From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE
Samira Pakravan
Nikolaos Evangelou
Maxime Usdin
Logan Brooks
James Lu
26
0
0
05 Mar 2024
DynGMA: a robust approach for learning stochastic differential equations from data
Aiqing Zhu
Qianxiao Li
OOD
DiffM
25
3
0
22 Feb 2024
Tipping Points of Evolving Epidemiological Networks: Machine Learning-Assisted, Data-Driven Effective Modeling
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Alexei Makeev
Ioannis G. Kevrekidis
32
1
0
01 Nov 2023
Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points
Gianluca Fabiani
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Cristina P. Martin-Linares
Constantinos Siettos
Ioannis G. Kevrekidis
38
2
0
25 Sep 2023
Early warning indicators via latent stochastic dynamical systems
Lingyu Feng
Ting Gao
Wang Xiao
Jinqiao Duan
15
2
0
07 Sep 2023
Constructing Custom Thermodynamics Using Deep Learning
Xiaoli Chen
Beatrice W. Soh
Z. Ooi
E. Vissol-Gaudin
Haijun Yu
K. Novoselov
K. Hippalgaonkar
Qianxiao Li
AI4CE
11
7
0
08 Aug 2023
Learning Stochastic Dynamical System via Flow Map Operator
Yuán Chen
D. Xiu
AI4CE
27
15
0
05 May 2023
Reservoir Computing with Error Correction: Long-term Behaviors of Stochastic Dynamical Systems
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
33
4
0
01 May 2023
Some of the variables, some of the parameters, some of the times, with some physics known: Identification with partial information
S. Malani
Tom S. Bertalan
Tianqi Cui
J. Avalos
Michael Betenbaugh
Ioannis G. Kevrekidis
PINN
AI4CE
37
4
0
27 Apr 2023
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
35
1
0
17 Nov 2022
An end-to-end deep learning approach for extracting stochastic dynamical systems with
α
α
α
-stable Lévy noise
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
55
16
0
31 Jan 2022
1