Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08900
Cited By
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
14 June 2021
Lukas Gonon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality"
11 / 11 papers shown
Title
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
57
0
0
16 Jul 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
42
4
0
14 Jun 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
37
7
0
08 May 2024
Unsupervised Random Quantum Networks for PDEs
Josh Dees
Antoine Jacquier
Sylvain Laizet
21
2
0
21 Dec 2023
FAVOR#: Sharp Attention Kernel Approximations via New Classes of Positive Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
18
3
0
01 Feb 2023
Deep neural network expressivity for optimal stopping problems
Lukas Gonon
11
6
0
19 Oct 2022
Chaotic Hedging with Iterated Integrals and Neural Networks
Ariel Neufeld
Philipp Schmocker
31
10
0
21 Sep 2022
Chefs' Random Tables: Non-Trigonometric Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
33
17
0
30 May 2022
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with
ℓ
1
\ell^1
ℓ
1
and
ℓ
0
\ell^0
ℓ
0
Controls
Jason M. Klusowski
Andrew R. Barron
130
142
0
26 Jul 2016
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
1