ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08769
  4. Cited By
Knowledge-Adaptation Priors
v1v2 (latest)

Knowledge-Adaptation Priors

16 June 2021
Mohammad Emtiyaz Khan
S. Swaroop
    BDLVLMODL
ArXiv (abs)PDFHTML

Papers citing "Knowledge-Adaptation Priors"

32 / 32 papers shown
Title
Challenges in Deploying Machine Learning: a Survey of Case Studies
Challenges in Deploying Machine Learning: a Survey of Case Studies
Andrei Paleyes
Raoul-Gabriel Urma
Neil D. Lawrence
64
403
0
18 Nov 2020
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDLMU
82
128
0
24 Oct 2020
Machine Unlearning for Random Forests
Machine Unlearning for Random Forests
Jonathan Brophy
Daniel Lowd
MU
70
162
0
11 Sep 2020
Predictive Complexity Priors
Predictive Complexity Priors
Eric T. Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
BDLUQCV
48
19
0
18 Jun 2020
Continual Deep Learning by Functional Regularisation of Memorable Past
Continual Deep Learning by Functional Regularisation of Memorable Past
Pingbo Pan
S. Swaroop
Alexander Immer
Runa Eschenhagen
Richard Turner
Mohammad Emtiyaz Khan
KELMCLL
52
143
0
29 Apr 2020
Dark Experience for General Continual Learning: a Strong, Simple
  Baseline
Dark Experience for General Continual Learning: a Strong, Simple Baseline
Pietro Buzzega
Matteo Boschini
Angelo Porrello
Davide Abati
Simone Calderara
BDLCLL
85
921
0
15 Apr 2020
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep
  Networks
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Stefano Soatto
CLLMU
78
503
0
12 Nov 2019
Certified Data Removal from Machine Learning Models
Certified Data Removal from Machine Learning Models
Chuan Guo
Tom Goldstein
Awni Y. Hannun
Laurens van der Maaten
MU
110
450
0
08 Nov 2019
Online Continual Learning with Maximally Interfered Retrieval
Online Continual Learning with Maximally Interfered Retrieval
Rahaf Aljundi
Lucas Caccia
Eugene Belilovsky
Massimo Caccia
Min Lin
Laurent Charlin
Tinne Tuytelaars
CLL
76
547
0
11 Aug 2019
Making AI Forget You: Data Deletion in Machine Learning
Making AI Forget You: Data Deletion in Machine Learning
Antonio A. Ginart
M. Guan
Gregory Valiant
James Zou
MU
81
480
0
11 Jul 2019
Gradient based sample selection for online continual learning
Gradient based sample selection for online continual learning
Rahaf Aljundi
Min Lin
Baptiste Goujaud
Yoshua Bengio
BDLCLL
104
837
0
20 Mar 2019
Gaussian Process Optimization with Adaptive Sketching: Scalable and No
  Regret
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
GP
43
0
0
13 Mar 2019
Continual Learning in Practice
Continual Learning in Practice
Tom Diethe
Tom Borchert
Eno Thereska
Borja Balle
Neil D. Lawrence
CLL
53
75
0
12 Mar 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLLBDL
65
186
0
31 Jan 2019
Infinite-Horizon Gaussian Processes
Infinite-Horizon Gaussian Processes
Arno Solin
J. Hensman
Richard Turner
41
28
0
15 Nov 2018
Measuring and regularizing networks in function space
Measuring and regularizing networks in function space
Ari S. Benjamin
David Rolnick
Konrad Paul Kording
51
140
0
21 May 2018
Online Structured Laplace Approximations For Overcoming Catastrophic
  Forgetting
Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting
H. Ritter
Aleksandar Botev
David Barber
BDLCLL
89
334
0
20 May 2018
Progress & Compress: A scalable framework for continual learning
Progress & Compress: A scalable framework for continual learning
Jonathan Richard Schwarz
Jelena Luketina
Wojciech M. Czarnecki
A. Grabska-Barwinska
Yee Whye Teh
Razvan Pascanu
R. Hadsell
CLL
125
889
0
16 May 2018
Variational Continual Learning
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLLVLMBDL
92
734
0
29 Oct 2017
Adaptive SVM+: Learning with Privileged Information for Domain
  Adaptation
Adaptive SVM+: Learning with Privileged Information for Domain Adaptation
N. Sarafianos
Michalis Vrigkas
I. Kakadiaris
71
22
0
30 Aug 2017
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
127
2,735
0
26 Jun 2017
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Sang-Woo Lee
Jin-Hwa Kim
Jaehyun Jun
Jung-Woo Ha
Byoung-Tak Zhang
CLL
72
679
0
24 Mar 2017
Knowledge Adaptation: Teaching to Adapt
Knowledge Adaptation: Teaching to Adapt
Sebastian Ruder
Parsa Ghaffari
J. Breslin
CLLTTA
56
53
0
07 Feb 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
372
7,561
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
160
3,774
0
23 Nov 2016
Improving Efficiency of SVM k-fold Cross-validation by Alpha Seeding
Improving Efficiency of SVM k-fold Cross-validation by Alpha Seeding
Zeyi Wen
Bin Li
K. Ramamohanarao
Jian Chen
Yawen Chen
Rui Zhang
33
23
0
23 Nov 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
304
4,428
0
29 Jun 2016
Unifying distillation and privileged information
Unifying distillation and privileged information
David Lopez-Paz
Léon Bottou
Bernhard Schölkopf
V. Vapnik
FedML
169
463
0
11 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
364
19,723
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
New insights and perspectives on the natural gradient method
New insights and perspectives on the natural gradient method
James Martens
ODL
76
630
0
03 Dec 2014
Fast Randomized Kernel Methods With Statistical Guarantees
Fast Randomized Kernel Methods With Statistical Guarantees
A. Alaoui
Michael W. Mahoney
99
90
0
02 Nov 2014
1