ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08502
  4. Cited By
Averaging on the Bures-Wasserstein manifold: dimension-free convergence
  of gradient descent

Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent

16 June 2021
Jason M. Altschuler
Sinho Chewi
P. Gerber
Austin J. Stromme
ArXivPDFHTML

Papers citing "Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent"

17 / 17 papers shown
Title
On Barycenter Computation: Semi-Unbalanced Optimal Transport-based
  Method on Gaussians
On Barycenter Computation: Semi-Unbalanced Optimal Transport-based Method on Gaussians
Ngoc-Hai Nguyen
Dung D. Le
Hoang Nguyen
Tung Pham
Nhat Ho
OT
36
1
0
10 Oct 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
41
0
0
03 Oct 2024
Large Deviations Principle for Bures-Wasserstein Barycenters
Large Deviations Principle for Bures-Wasserstein Barycenters
Adam Quinn Jaffe
Leonardo P. M. Santoro
21
0
0
17 Sep 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
32
7
0
05 Dec 2023
Optimal Transport for Measures with Noisy Tree Metric
Optimal Transport for Measures with Noisy Tree Metric
Tam Le
Truyen V. Nguyen
Kenji Fukumizu
OT
32
4
0
20 Oct 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
32
21
0
10 Apr 2023
Personalised Federated Learning On Heterogeneous Feature Spaces
Personalised Federated Learning On Heterogeneous Feature Spaces
A. Rakotomamonjy
Maxime Vono
H. M. Ruiz
L. Ralaivola
FedML
18
8
0
26 Jan 2023
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient
  Flow
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow
Yuling Yan
Kaizheng Wang
Philippe Rigollet
44
20
0
04 Jan 2023
Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery
Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery
Tyler Maunu
Thibaut Le Gouic
Philippe Rigollet
22
5
0
26 Oct 2022
Meta-learning Pathologies from Radiology Reports using Variance Aware
  Prototypical Networks
Meta-learning Pathologies from Radiology Reports using Variance Aware Prototypical Networks
Arijit Sehanobish
Kawshik Kannan
Nabila Abraham
Anasuya Das
Benjamin Odry
VLM
26
0
0
22 Oct 2022
Provable Acceleration of Heavy Ball beyond Quadratics for a Class of
  Polyak-Łojasiewicz Functions when the Non-Convexity is Averaged-Out
Provable Acceleration of Heavy Ball beyond Quadratics for a Class of Polyak-Łojasiewicz Functions when the Non-Convexity is Averaged-Out
Jun-Kun Wang
Chi-Heng Lin
Andre Wibisono
Bin Hu
32
20
0
22 Jun 2022
An entropic generalization of Caffarelli's contraction theorem via
  covariance inequalities
An entropic generalization of Caffarelli's contraction theorem via covariance inequalities
Sinho Chewi
Aram-Alexandre Pooladian
36
36
0
09 Mar 2022
Wasserstein Iterative Networks for Barycenter Estimation
Wasserstein Iterative Networks for Barycenter Estimation
Alexander Korotin
Vage Egiazarian
Lingxiao Li
Evgeny Burnaev
32
24
0
28 Jan 2022
Measure Estimation in the Barycentric Coding Model
Measure Estimation in the Barycentric Coding Model
Matthew Werenski
Ruijie Jiang
Abiy Tasissa
Shuchin Aeron
James M. Murphy
40
14
0
28 Jan 2022
Wasserstein barycenters are NP-hard to compute
Wasserstein barycenters are NP-hard to compute
Jason M. Altschuler
Enric Boix-Adserà
OT
157
40
0
04 Jan 2021
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
126
259
0
10 Dec 2012
1