Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.06707
Cited By
Graph Neural Networks with Local Graph Parameters
12 June 2021
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph Neural Networks with Local Graph Parameters"
38 / 38 papers shown
Title
Counting Substructures with Higher-Order Graph Neural Networks: Possibility and Impossibility Results
B. Tahmasebi
Derek Lim
Stefanie Jegelka
GNN
102
30
0
06 Dec 2020
The Surprising Power of Graph Neural Networks with Random Node Initialization
Ralph Abboud
.Ismail .Ilkan Ceylan
Martin Grohe
Thomas Lukasiewicz
82
221
0
02 Oct 2020
The expressive power of kth-order invariant graph networks
Floris Geerts
142
37
0
23 Jul 2020
A Novel Higher-order Weisfeiler-Lehman Graph Convolution
C. Damke
Vitali M. Melnikov
Eyke Hüllermeier
GNN
35
14
0
01 Jul 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
62
111
0
28 Jun 2020
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
50
121
0
26 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
109
430
0
16 Jun 2020
Weisfeiler-Lehman Embedding for Molecular Graph Neural Networks
Katsuhiko Ishiguro
Kenta Oono
K. Hayashi
GNN
40
4
0
12 Jun 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
85
289
0
07 May 2020
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
124
41
0
03 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
285
2,725
0
02 May 2020
Let's Agree to Degree: Comparing Graph Convolutional Networks in the Message-Passing Framework
Floris Geerts
Filip Mazowiecki
Guillermo A. Pérez
GNN
58
38
0
06 Apr 2020
word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data
Martin Grohe
70
172
0
27 Mar 2020
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
306
172
0
09 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
387
939
0
02 Mar 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
94
312
0
14 Feb 2020
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
109
324
0
10 Feb 2020
Random Features Strengthen Graph Neural Networks
Ryoma Sato
M. Yamada
H. Kashima
GNN
AAML
68
237
0
08 Feb 2020
A Hierarchy of Graph Neural Networks Based on Learnable Local Features
M. Li
Meng Dong
Jiawei Zhou
Alexander M. Rush
AI4CE
GNN
55
7
0
13 Nov 2019
Quantifying the Carbon Emissions of Machine Learning
Alexandre Lacoste
A. Luccioni
Victor Schmidt
Thomas Dandres
86
695
0
21 Oct 2019
What graph neural networks cannot learn: depth vs width
Andreas Loukas
GNN
82
299
0
06 Jul 2019
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen
Soledad Villar
Lei Chen
Joan Bruna
78
281
0
29 May 2019
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
108
578
0
27 May 2019
Approximation Ratios of Graph Neural Networks for Combinatorial Problems
Ryoma Sato
M. Yamada
H. Kashima
GNN
85
128
0
24 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
160
292
0
13 May 2019
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification
Ting-Li Chen
Song Bian
Yizhou Sun
85
88
0
11 May 2019
On the Universality of Invariant Networks
Haggai Maron
Ethan Fetaya
Nimrod Segol
Y. Lipman
OOD
145
238
0
27 Jan 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
664
8,496
0
03 Jan 2019
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
113
502
0
24 Dec 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
179
1,630
0
04 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
222
7,623
0
01 Oct 2018
Residual Gated Graph ConvNets
Xavier Bresson
T. Laurent
GNN
118
481
0
20 Nov 2017
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
434
20,089
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
460
15,179
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
522
7,431
0
04 Apr 2017
Community Detection and Stochastic Block Models
Emmanuel Abbe
126
1,192
0
29 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
402
1,819
0
25 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
585
28,999
0
09 Sep 2016
1