Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.05934
Cited By
Flow-based sampling for fermionic lattice field theories
10 June 2021
M. S. Albergo
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
Julian M. Urban
D. Boyda
Kyle Cranmer
D. Hackett
P. Shanahan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Flow-based sampling for fermionic lattice field theories"
22 / 22 papers shown
Title
NeuMC -- a package for neural sampling for lattice field theories
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
39
0
0
14 Mar 2025
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Practical applications of machine-learned flows on gauge fields
Ryan Abbott
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Fernando Romero-López
P. Shanahan
Julian M. Urban
AI4CE
36
11
0
17 Apr 2024
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning
V. Kanaujia
Mathias S. Scheurer
Vipul Arora
GAN
DRL
22
2
0
29 Jan 2024
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
Bálint Máté
Franccois Fleuret
AI4CE
34
0
0
01 Jan 2024
Diffusion Models as Stochastic Quantization in Lattice Field Theory
Lei Wang
Gert Aarts
Kai Zhou
DiffM
32
14
0
29 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
29
27
0
03 Sep 2023
Training normalizing flows with computationally intensive target probability distributions
P. Białas
P. Korcyl
T. Stebel
18
5
0
25 Aug 2023
Sampling the lattice Nambu-Goto string using Continuous Normalizing Flows
M. Caselle
E. Cellini
A. Nada
25
14
0
03 Jul 2023
Understanding Deep Generative Models with Generalized Empirical Likelihoods
Suman V. Ravuri
Mélanie Rey
S. Mohamed
M. Deisenroth
VLM
27
5
0
16 Jun 2023
Geometrical aspects of lattice gauge equivariant convolutional neural networks
J. Aronsson
David I. Müller
Daniel Schuh
31
7
0
20 Mar 2023
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
29
23
0
18 Jan 2023
Simulating first-order phase transition with hierarchical autoregressive networks
P. Białas
Paul A. Czarnota
P. Korcyl
T. Stebel
9
3
0
09 Dec 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Deformations of Boltzmann Distributions
Bálint Máté
Franccois Fleuret
OT
28
2
0
25 Oct 2022
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
29
19
0
10 Feb 2022
Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths
Yanming Che
C. Gneiting
Franco Nori
35
6
0
06 Feb 2022
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
36
34
0
21 Jan 2022
Machine Learning Trivializing Maps: A First Step Towards Understanding How Flow-Based Samplers Scale Up
L. Debbio
Joe Marsh Rossney
Michael Wilson
16
6
0
31 Dec 2021
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
37
41
0
04 Dec 2021
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
AI4CE
13
35
0
06 Oct 2021
Orbital MCMC
Kirill Neklyudov
Max Welling
26
7
0
15 Oct 2020
1