Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.05609
Cited By
GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings
10 June 2021
Matthias Fey
J. E. Lenssen
F. Weichert
J. Leskovec
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings"
34 / 34 papers shown
Title
Efficient Mixed Precision Quantization in Graph Neural Networks
Samir Moustafa
Nils M. Kriege
Wilfried Gansterer
GNN
MQ
35
0
0
14 May 2025
DeepGate4: Efficient and Effective Representation Learning for Circuit Design at Scale
Ziyang Zheng
Shan Huang
Qiang Xu
Zhengyuan Shi
Guohao Dai
Ningyi Xu
Qiang Xu
GNN
91
3
0
02 Feb 2025
ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective
Yihong Chen
Pushkar Mishra
Luca Franceschi
Pasquale Minervini
Pontus Stenetorp
Sebastian Riedel
67
20
0
17 Jan 2025
Heterogeneous Interaction Modeling With Reduced Accumulated Error for Multi-Agent Trajectory Prediction
Siyuan Chen
Jiahai Wang
46
10
0
28 Oct 2024
PromptGCN: Bridging Subgraph Gaps in Lightweight GCNs
Shengwei Ji
Yujie Tian
Fei Liu
Xinlu Li
Le Wu
GNN
42
0
0
14 Oct 2024
Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity
Mucong Ding
Tahseen Rabbani
Bang An
Evan Z Wang
Furong Huang
31
21
0
21 Jun 2024
Anomaly Detection in Dynamic Graphs: A Comprehensive Survey
Ocheme Anthony Ekle
William Eberle
AI4TS
47
10
0
31 May 2024
Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching
Zibin Huang
Jun Xian
GNN
47
0
0
19 Apr 2024
HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks
Yongyi Yang
Jiaming Yang
Wei Hu
Michal Dereziñski
48
0
0
26 Mar 2024
Mixture of Weak & Strong Experts on Graphs
Hanqing Zeng
Hanjia Lyu
Diyi Hu
Yinglong Xia
Jiebo Luo
33
3
0
09 Nov 2023
Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias
Zhihao Shi
Jie Wang
Fanghua Lu
Hanzhu Chen
Defu Lian
Zheng Wang
Jieping Ye
Feng Wu
AI4CE
32
6
0
26 Sep 2023
BatchGNN: Efficient CPU-Based Distributed GNN Training on Very Large Graphs
Loc Hoang
Rita Brugarolas Brufau
Ke Ding
Bo Wu
GNN
35
2
0
23 Jun 2023
Otter-Knowledge: benchmarks of multimodal knowledge graph representation learning from different sources for drug discovery
Hoang Thanh Lam
M. Sbodio
Marcos Martínez Galindo
Mykhaylo Zayats
Raúl Fernández-Díaz
Víctor Valls
Gabriele Picco
Cesar Berrospi Ramis
V. López
21
8
0
22 Jun 2023
SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations
Qitian Wu
Wen-Long Zhao
Chenxiao Yang
Hengrui Zhang
Fan Nie
Haitian Jiang
Yatao Bian
Junchi Yan
AI4CE
48
78
0
19 Jun 2023
The Evolution of Distributed Systems for Graph Neural Networks and their Origin in Graph Processing and Deep Learning: A Survey
Jana Vatter
R. Mayer
Hans-Arno Jacobsen
GNN
AI4TS
AI4CE
48
23
0
23 May 2023
LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation
Rui Xue
Haoyu Han
MohamadAli Torkamani
Jian Pei
Xiaorui Liu
GNN
33
21
0
03 Feb 2023
FreshGNN: Reducing Memory Access via Stable Historical Embeddings for Graph Neural Network Training
Kezhao Huang
Haitian Jiang
Minjie Wang
Guangxuan Xiao
David Wipf
Xiang Song
Quan Gan
Zengfeng Huang
Jidong Zhai
Zheng-Wei Zhang
GNN
33
2
0
18 Jan 2023
DGI: Easy and Efficient Inference for GNNs
Peiqi Yin
Xiao Yan
Jinjing Zhou
Qiang Fu
Zhenkun Cai
James Cheng
Bo Tang
Minjie Wang
GNN
36
4
0
28 Nov 2022
DistGNN-MB: Distributed Large-Scale Graph Neural Network Training on x86 via Minibatch Sampling
Md. Vasimuddin
Ramanarayan Mohanty
Sanchit Misra
Sasikanth Avancha
GNN
18
1
0
11 Nov 2022
RSC: Accelerating Graph Neural Networks Training via Randomized Sparse Computations
Zirui Liu
Sheng-Wei Chen
Kaixiong Zhou
Daochen Zha
Xiao Huang
Xia Hu
32
15
0
19 Oct 2022
A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking
Keyu Duan
Zirui Liu
Peihao Wang
Wenqing Zheng
Kaixiong Zhou
Tianlong Chen
Xia Hu
Zhangyang Wang
GNN
43
57
0
14 Oct 2022
Linkless Link Prediction via Relational Distillation
Zhichun Guo
William Shiao
Shichang Zhang
Yozen Liu
Nitesh Chawla
Neil Shah
Tong Zhao
32
41
0
11 Oct 2022
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization
Xiaotian Han
Tong Zhao
Yozen Liu
Xia Hu
Neil Shah
GNN
63
36
0
30 Sep 2022
BiFeat: Supercharge GNN Training via Graph Feature Quantization
Yuxin Ma
Ping Gong
Jun Yi
Z. Yao
Cheng-rong Li
Yuxiong He
Feng Yan
GNN
21
6
0
29 Jul 2022
Sampling Enclosing Subgraphs for Link Prediction
Paul Louis
Shweta Ann Jacob
Amirali Salehi-Abari
GNN
30
14
0
23 Jun 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
Cheng Wan
Youjie Li
Ang Li
Namjae Kim
Yingyan Lin
GNN
37
75
0
21 Mar 2022
Implicit vs Unfolded Graph Neural Networks
Yongyi Yang
Tang Liu
Yangkun Wang
Zengfeng Huang
David Wipf
54
15
0
12 Nov 2021
SSSNET: Semi-Supervised Signed Network Clustering
Yixuan He
Gesine Reinert
Songchao Wang
Mihai Cucuringu
26
28
0
13 Oct 2021
IGLU: Efficient GCN Training via Lazy Updates
S. Narayanan
Aditya Sinha
Prateek Jain
Purushottam Kar
Sundararajan Sellamanickam
BDL
52
11
0
28 Sep 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
53
18
0
21 Jul 2021
SelfCF: A Simple Framework for Self-supervised Collaborative Filtering
Xin Zhou
Aixin Sun
Yong-jin Liu
Jie Zhang
Chunyan Miao
SSL
31
77
0
07 Jul 2021
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
918
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
279
1,948
0
09 Jun 2018
1