ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05238
  4. Cited By
I Don't Need u: Identifiable Non-Linear ICA Without Side Information

I Don't Need u: Identifiable Non-Linear ICA Without Side Information

9 June 2021
M. Willetts
Brooks Paige
    CML
    OOD
ArXivPDFHTML

Papers citing "I Don't Need u: Identifiable Non-Linear ICA Without Side Information"

6 / 6 papers shown
Title
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
33
9
0
24 Oct 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
21
6
0
04 Aug 2023
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
30
41
0
06 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Anton van den Hengel
AI4CE
55
11
0
29 Jan 2023
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
23
49
0
20 Jun 2022
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
Ignavier Ng
Anton van den Hengel
CML
16
59
0
15 Jun 2022
1