ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05200
  4. Cited By
Independent mechanism analysis, a new concept?
v1v2v3 (latest)

Independent mechanism analysis, a new concept?

9 June 2021
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
    CML
ArXiv (abs)PDFHTML

Papers citing "Independent mechanism analysis, a new concept?"

20 / 70 papers shown
Title
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OODAI4CECML
77
13
0
01 Feb 2023
PaDPaF: Partial Disentanglement with Partially-Federated GANs
PaDPaF: Partial Disentanglement with Partially-Federated GANs
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
52
0
0
07 Dec 2022
Synergies between Disentanglement and Sparsity: Generalization and
  Identifiability in Multi-Task Learning
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
78
34
0
26 Nov 2022
Mechanistic Mode Connectivity
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
118
49
0
15 Nov 2022
Function Classes for Identifiable Nonlinear Independent Component
  Analysis
Function Classes for Identifiable Nonlinear Independent Component Analysis
Simon Buchholz
M. Besserve
Bernhard Schölkopf
89
40
0
12 Aug 2022
Homomorphism Autoencoder -- Learning Group Structured Representations
  from Observed Transitions
Homomorphism Autoencoder -- Learning Group Structured Representations from Observed Transitions
Hamza Keurti
Hsiao-Ru Pan
M. Besserve
Benjamin Grewe
Bernhard Schölkopf
AI4CE
79
15
0
25 Jul 2022
Probing the Robustness of Independent Mechanism Analysis for
  Representation Learning
Probing the Robustness of Independent Mechanism Analysis for Representation Learning
Joanna Sliwa
Shubhangi Ghosh
Vincent Stimper
Luigi Gresele
Bernhard Schölkopf
OODCML
34
6
0
13 Jul 2022
When are Post-hoc Conceptual Explanations Identifiable?
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
119
12
0
28 Jun 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
113
53
0
20 Jun 2022
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
Ignavier Ng
Kun Zhang
CML
97
65
0
15 Jun 2022
Causal Representation Learning for Instantaneous and Temporal Effects in
  Interactive Systems
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
67
31
0
13 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
92
21
0
06 Jun 2022
Indeterminacy in Generative Models: Characterization and Strong
  Identifiability
Indeterminacy in Generative Models: Characterization and Strong Identifiability
Quanhan Xi
Benjamin Bloem-Reddy
92
27
0
02 Jun 2022
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
97
46
0
01 Apr 2022
Weakly supervised causal representation learning
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OODCML
96
131
0
30 Mar 2022
Principal Manifold Flows
Principal Manifold Flows
Edmond Cunningham
Adam D. Cobb
Susmit Jha
DRL
65
8
0
14 Feb 2022
On Pitfalls of Identifiability in Unsupervised Learning. A Note on:
  "Desiderata for Representation Learning: A Causal Perspective"
On Pitfalls of Identifiability in Unsupervised Learning. A Note on: "Desiderata for Representation Learning: A Causal Perspective"
Shubhangi Ghosh
Luigi Gresele
Julius von Kügelgen
M. Besserve
Bernhard Schölkopf
CML
53
0
0
14 Feb 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
105
109
0
07 Feb 2022
Properties from Mechanisms: An Equivariance Perspective on Identifiable
  Representation Learning
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
97
39
0
29 Oct 2021
Self-Supervised Learning with Data Augmentations Provably Isolates
  Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
127
317
0
08 Jun 2021
Previous
12