ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05121
  4. Cited By
Grounding inductive biases in natural images:invariance stems from
  variations in data
v1v2 (latest)

Grounding inductive biases in natural images:invariance stems from variations in data

9 June 2021
Diane Bouchacourt
Mark Ibrahim
Ari S. Morcos
    OOD
ArXiv (abs)PDFHTML

Papers citing "Grounding inductive biases in natural images:invariance stems from variations in data"

18 / 18 papers shown
Title
Tracking translation invariance in CNNs
Tracking translation invariance in CNNs
Johannes C. Myburgh
Coenraad Mouton
Marelie Hattingh Davel
24
13
0
13 Apr 2021
Learning Invariances in Neural Networks
Learning Invariances in Neural Networks
Gregory W. Benton
Marc Finzi
Pavel Izmailov
A. Wilson
84
70
0
22 Oct 2020
Meta-Learning Symmetries by Reparameterization
Meta-Learning Symmetries by Reparameterization
Allan Zhou
Tom Knowles
Chelsea Finn
OOD
81
96
0
06 Jul 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
267
4,101
0
17 Jun 2020
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object
  Detection
U2^22-Net: Going Deeper with Nested U-Structure for Salient Object Detection
Xuebin Qin
Zichen Zhang
Chenyang Huang
Masood Dehghan
Osmar R. Zaiane
Martin Jägersand
90
1,662
0
18 May 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie
  Groups on Arbitrary Continuous Data
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
122
324
0
25 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGeOODDRL
242
320
0
07 Feb 2020
Fixing the train-test resolution discrepancy
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
139
424
0
14 Jun 2019
Making Convolutional Networks Shift-Invariant Again
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
93
798
0
25 Apr 2019
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses
  of Familiar Objects
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects
Michael A. Alcorn
Melvin Johnson
Zhitao Gong
Chengfei Wang
Long Mai
Naveen Ari
Stella Laurenzo
96
298
0
28 Nov 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLTAI4CE
224
316
0
05 Nov 2018
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
84
86
0
16 Aug 2018
Why do deep convolutional networks generalize so poorly to small image
  transformations?
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
82
562
0
30 May 2018
Quantifying Translation-Invariance in Convolutional Neural Networks
Quantifying Translation-Invariance in Convolutional Neural Networks
Eric Kauderer-Abrams
65
113
0
10 Dec 2017
Data Augmentation Generative Adversarial Networks
Data Augmentation Generative Adversarial Networks
Antreas Antoniou
Amos Storkey
Harrison Edwards
MedImGAN
145
1,074
0
12 Nov 2017
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
176
1,946
0
24 Feb 2016
Understanding image representations by measuring their equivariance and
  equivalence
Understanding image representations by measuring their equivariance and equivalence
Karel Lenc
Andrea Vedaldi
SSLFAtt
122
537
0
21 Nov 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
286
12,460
0
24 Jun 2012
1