Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02969
Cited By
FedNL: Making Newton-Type Methods Applicable to Federated Learning
5 June 2021
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedNL: Making Newton-Type Methods Applicable to Federated Learning"
45 / 45 papers shown
Title
FedOSAA: Improving Federated Learning with One-Step Anderson Acceleration
Xue Feng
M. Paul Laiu
Thomas Strohmer
FedML
75
0
0
14 Mar 2025
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
61
0
0
11 Mar 2025
MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
Igor Sokolov
Peter Richtárik
106
1
0
22 Dec 2024
GP-FL: Model-Based Hessian Estimation for Second-Order Over-the-Air Federated Learning
Shayan Mohajer Hamidi
Ali Bereyhi
S. Asaad
H. Vincent Poor
86
1
0
05 Dec 2024
Review of Mathematical Optimization in Federated Learning
Shusen Yang
Fangyuan Zhao
Zihao Zhou
Liang Shi
Xuebin Ren
Zongben Xu
FedML
AI4CE
93
1
0
02 Dec 2024
Federated Learning with Uncertainty and Personalization via Efficient Second-order Optimization
Shivam Pal
Aishwarya Gupta
Saqib Sarwar
Piyush Rai
FedML
90
0
0
27 Nov 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
42
0
0
11 Nov 2024
Error Feedback under
(
L
0
,
L
1
)
(L_0,L_1)
(
L
0
,
L
1
)
-Smoothness: Normalization and Momentum
Sarit Khirirat
Abdurakhmon Sadiev
Artem Riabinin
Eduard A. Gorbunov
Peter Richtárik
32
1
0
22 Oct 2024
FLeNS: Federated Learning with Enhanced Nesterov-Newton Sketch
Sunny Gupta
Mohit Jindal
Pankhi Kashyap
Pranav Jeevan
Amit Sethi
FedML
55
0
0
23 Sep 2024
Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
Wei Huo
Changxin Liu
Kemi Ding
Karl H. Johansson
Ling Shi
FedML
65
0
0
08 Aug 2024
Fed-Sophia: A Communication-Efficient Second-Order Federated Learning Algorithm
Ahmed Elbakary
Chaouki Ben Issaid
Mohammad Shehab
Karim G. Seddik
Tamer A. ElBatt
Mehdi Bennis
72
2
0
10 Jun 2024
FAGH: Accelerating Federated Learning with Approximated Global Hessian
Mrinmay Sen
A. K. Qin
Krishna Mohan
FedML
45
0
0
16 Mar 2024
FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning
Jian Li
Yong Liu
Wei Wang
Haoran Wu
Weiping Wang
FedML
61
2
0
05 Jan 2024
Distributed Adaptive Greedy Quasi-Newton Methods with Explicit Non-asymptotic Convergence Bounds
Yubo Du
Keyou You
57
4
0
30 Nov 2023
EControl: Fast Distributed Optimization with Compression and Error Control
Yuan Gao
Rustem Islamov
Sebastian U. Stich
50
8
0
06 Nov 2023
AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms
Rustem Islamov
M. Safaryan
Dan Alistarh
FedML
42
13
0
31 Oct 2023
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
36
20
0
17 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
60
5
0
15 Oct 2023
Improved Communication Efficiency in Federated Natural Policy Gradient via ADMM-based Gradient Updates
Guangchen Lan
Han Wang
James Anderson
Christopher G. Brinton
Vaneet Aggarwal
FedML
39
27
0
09 Oct 2023
FedZeN: Towards superlinear zeroth-order federated learning via incremental Hessian estimation
A. Maritan
S. Dey
Luca Schenato
FedML
35
6
0
29 Sep 2023
Efficient Federated Learning via Local Adaptive Amended Optimizer with Linear Speedup
Yan Sun
Li Shen
Hao Sun
Liang Ding
Dacheng Tao
FedML
29
17
0
30 Jul 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
57
6
0
28 Jun 2023
Federated Composite Saddle Point Optimization
Site Bai
Brian Bullins
FedML
43
0
0
25 May 2023
Momentum Provably Improves Error Feedback!
Ilyas Fatkhullin
Alexander Tyurin
Peter Richtárik
58
20
0
24 May 2023
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors Quantization
Nicolò Dal Fabbro
M. Rossi
Luca Schenato
S. Dey
31
0
0
18 May 2023
Network-GIANT: Fully distributed Newton-type optimization via harmonic Hessian consensus
A. Maritan
Ganesh Sharma
Luca Schenato
S. Dey
38
2
0
13 May 2023
Advancements in Federated Learning: Models, Methods, and Privacy
Hui Chen
Huandong Wang
Qingyue Long
Depeng Jin
Yong Li
FedML
67
14
0
22 Feb 2023
FLECS-CGD: A Federated Learning Second-Order Framework via Compression and Sketching with Compressed Gradient Differences
A. Agafonov
Brahim Erraji
Martin Takáč
FedML
49
4
0
18 Oct 2022
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
78
6
0
03 Oct 2022
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
Kaja Gruntkowska
Alexander Tyurin
Peter Richtárik
73
22
0
30 Sep 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
48
20
0
08 Jul 2022
Shifted Compression Framework: Generalizations and Improvements
Egor Shulgin
Peter Richtárik
20
6
0
21 Jun 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
39
6
0
20 Jun 2022
FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning
Anis Elgabli
Chaouki Ben Issaid
Amrit Singh Bedi
K. Rajawat
M. Bennis
Vaneet Aggarwal
FedML
21
30
0
17 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
49
16
0
07 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
24
0
0
01 Jun 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
44
16
0
20 Apr 2022
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
67
14
0
11 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
57
18
0
07 Feb 2022
3PC: Three Point Compressors for Communication-Efficient Distributed Training and a Better Theory for Lazy Aggregation
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
Elnur Gasanov
Zhize Li
Eduard A. Gorbunov
31
31
0
02 Feb 2022
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
53
23
0
02 Nov 2021
On Second-order Optimization Methods for Federated Learning
Sebastian Bischoff
Stephan Günnemann
Martin Jaggi
Sebastian U. Stich
FedML
28
10
0
06 Sep 2021
Communication-Efficient Distributed Optimization with Quantized Preconditioners
Foivos Alimisis
Peter Davies
Dan Alistarh
23
16
0
14 Feb 2021
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
170
78
0
23 Oct 2020
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
30
5
0
10 Oct 2019
1