Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02969
Cited By
FedNL: Making Newton-Type Methods Applicable to Federated Learning
5 June 2021
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedNL: Making Newton-Type Methods Applicable to Federated Learning"
18 / 18 papers shown
Title
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
61
0
0
11 Mar 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
42
0
0
11 Nov 2024
Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
Wei Huo
Changxin Liu
Kemi Ding
Karl H. Johansson
Ling Shi
FedML
60
0
0
08 Aug 2024
FAGH: Accelerating Federated Learning with Approximated Global Hessian
Mrinmay Sen
A. K. Qin
Krishna Mohan
FedML
45
0
0
16 Mar 2024
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
36
20
0
17 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
58
5
0
15 Oct 2023
Efficient Federated Learning via Local Adaptive Amended Optimizer with Linear Speedup
Yan Sun
Li Shen
Hao Sun
Liang Ding
Dacheng Tao
FedML
29
17
0
30 Jul 2023
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors Quantization
Nicolò Dal Fabbro
M. Rossi
Luca Schenato
S. Dey
31
0
0
18 May 2023
Network-GIANT: Fully distributed Newton-type optimization via harmonic Hessian consensus
A. Maritan
Ganesh Sharma
Luca Schenato
S. Dey
38
2
0
13 May 2023
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
75
6
0
03 Oct 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
43
20
0
08 Jul 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
37
6
0
20 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
45
16
0
07 Jun 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
44
16
0
20 Apr 2022
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
67
14
0
11 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
53
18
0
07 Feb 2022
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
44
23
0
02 Nov 2021
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
166
78
0
23 Oct 2020
1