Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02848
Cited By
v1
v2
v3 (latest)
Numerical Composition of Differential Privacy
5 June 2021
Sivakanth Gopi
Y. Lee
Lukas Wutschitz
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Numerical Composition of Differential Privacy"
31 / 131 papers shown
Title
Federated Boosted Decision Trees with Differential Privacy
Samuel Maddock
Graham Cormode
Tianhao Wang
Carsten Maple
S. Jha
FedML
82
30
0
06 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
155
54
0
02 Oct 2022
Differentially Private Optimization on Large Model at Small Cost
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
107
55
0
30 Sep 2022
Differentially Private Bias-Term Fine-tuning of Foundation Models
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
117
48
0
30 Sep 2022
Individual Privacy Accounting with Gaussian Differential Privacy
A. Koskela
Marlon Tobaben
Antti Honkela
107
20
0
30 Sep 2022
Feature-based Learning for Diverse and Privacy-Preserving Counterfactual Explanations
Vy Vo
Trung Le
Van Nguyen
He Zhao
Edwin V. Bonilla
Gholamreza Haffari
Dinh Q. Phung
CML
91
13
0
27 Sep 2022
DPAUC: Differentially Private AUC Computation in Federated Learning
Jiankai Sun
Xin Yang
Yuanshun Yao
Junyuan Xie
Di Wu
Chong-Jun Wang
FedML
84
12
0
25 Aug 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
65
7
0
20 Aug 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
104
15
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
79
43
0
10 Jul 2022
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Ryuichi Ito
Seng Pei Liew
Tsubasa Takahashi
Yuya Sasaki
Makoto Onizuka
58
1
0
06 Jul 2022
Normalized/Clipped SGD with Perturbation for Differentially Private Non-Convex Optimization
Xiaodong Yang
Huishuai Zhang
Wei Chen
Tie-Yan Liu
81
38
0
27 Jun 2022
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
Fei Wei
38
10
0
25 Jun 2022
Shuffle Gaussian Mechanism for Differential Privacy
Seng Pei Liew
Tsubasa Takahashi
FedML
77
2
0
20 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
132
72
0
14 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
83
40
0
10 Jun 2022
Analytical Composition of Differential Privacy via the Edgeworth Accountant
Hua Wang
Sheng-yang Gao
Huanyu Zhang
Milan Shen
Weijie J. Su
FedML
73
23
0
09 Jun 2022
Privacy Amplification via Shuffled Check-Ins
Seng Pei Liew
Satoshi Hasegawa
Tsubasa Takahashi
FedML
110
0
0
07 Jun 2022
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
154
22
0
06 Jun 2022
Differentially Private Model Compression
Fatemehsadat Mireshghallah
A. Backurs
Huseyin A. Inan
Lukas Wutschitz
Janardhan Kulkarni
SyDa
50
14
0
03 Jun 2022
FLUTE: A Scalable, Extensible Framework for High-Performance Federated Learning Simulations
Mirian Hipolito Garcia
Andre Manoel
Daniel Madrigal Diaz
Fatemehsadat Mireshghallah
Robert Sim
Dimitrios Dimitriadis
FedML
92
57
0
25 Mar 2022
DP-FP: Differentially Private Forward Propagation for Large Models
Jian Du
Haitao Mi
82
5
0
29 Dec 2021
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection
Shubhankar Mohapatra
Sajin Sasy
Xi He
Gautam Kamath
Om Thakkar
164
33
0
09 Nov 2021
Dynamic Differential-Privacy Preserving SGD
Jian Du
Song Li
Xiangyi Chen
Siheng Chen
Mingyi Hong
92
33
0
30 Oct 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
260
372
0
13 Oct 2021
A unified interpretation of the Gaussian mechanism for differential privacy through the sensitivity index
Georgios Kaissis
Moritz Knolle
F. Jungmann
Alexander Ziller
Dmitrii Usynin
Daniel Rueckert
59
1
0
22 Sep 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
93
139
0
03 Aug 2021
Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability
Qiyiwen Zhang
Zhiqi Bu
Kan Chen
Qi Long
BDL
UQCV
65
11
0
18 Jul 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
64
104
0
16 Jun 2021
Tight Accounting in the Shuffle Model of Differential Privacy
A. Koskela
Mikko A. Heikkilä
Antti Honkela
FedML
65
17
0
01 Jun 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
109
42
0
05 Feb 2021
Previous
1
2
3