Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02848
Cited By
Numerical Composition of Differential Privacy
5 June 2021
Sivakanth Gopi
Y. Lee
Lukas Wutschitz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Numerical Composition of Differential Privacy"
50 / 51 papers shown
Title
On the Price of Differential Privacy for Spectral Clustering over Stochastic Block Models
Antti Koskela
Mohamed Seif
Andrea J. Goldsmith
31
1
0
09 May 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
58
0
0
29 Mar 2025
An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses
Hao Liang
Feiyu Xiong
Xinlei He
Kaishun He
Hong Xing
47
0
0
25 Feb 2025
RAPID: Retrieval Augmented Training of Differentially Private Diffusion Models
Tanqiu Jiang
Changjiang Li
Fenglong Ma
Ting Wang
70
0
0
18 Feb 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
87
0
0
02 Dec 2024
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Joonas Jälkö
Antti Honkela
35
0
0
25 Oct 2024
The 2020 United States Decennial Census Is More Private Than You (Might) Think
Buxin Su
Weijie J. Su
Chendi Wang
39
3
0
11 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
37
0
0
01 Oct 2024
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
47
4
0
13 Jun 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
53
9
0
27 May 2024
Visual Privacy Auditing with Diffusion Models
Kristian Schwethelm
Johannes Kaiser
Moritz Knolle
Daniel Rueckert
Daniel Rueckert
Alexander Ziller
DiffM
AAML
35
0
0
12 Mar 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew J. Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
46
2
0
22 Feb 2024
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of Gaussians Mechanisms
Arun Ganesh
26
2
0
17 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
47
18
0
09 Jan 2024
Privately Aligning Language Models with Reinforcement Learning
Fan Wu
Huseyin A. Inan
A. Backurs
Varun Chandrasekaran
Janardhan Kulkarni
Robert Sim
29
6
0
25 Oct 2023
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
43
11
0
08 Jul 2023
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Anvith Thudi
Hengrui Jia
Casey Meehan
Ilia Shumailov
Nicolas Papernot
33
3
0
01 Jul 2023
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
52
11
0
06 Jun 2023
Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private Tuning
Umang Gupta
Aram Galstyan
Greg Ver Steeg
11
2
0
30 May 2023
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Zinan Lin
Sivakanth Gopi
Janardhan Kulkarni
Harsha Nori
Sergey Yekhanin
41
37
0
24 May 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zinan Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
38
19
0
23 May 2023
Privacy Amplification via Shuffling: Unified, Simplified, and Tightened
Shaowei Wang
FedML
26
9
0
11 Apr 2023
Arbitrary Decisions are a Hidden Cost of Differentially Private Training
B. Kulynych
Hsiang Hsu
Carmela Troncoso
Flavio du Pin Calmon
28
18
0
28 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
33
39
0
14 Feb 2023
Private GANs, Revisited
Alex Bie
Gautam Kamath
Guojun Zhang
38
14
0
06 Feb 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
35
18
0
22 Jan 2023
A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization
Ashwinee Panda
Xinyu Tang
Saeed Mahloujifar
Vikash Sehwag
Prateek Mittal
43
11
0
08 Dec 2022
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
30
46
0
03 Dec 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
32
14
0
21 Nov 2022
Privately Fine-Tuning Large Language Models with Differential Privacy
R. Behnia
Mohammadreza Ebrahimi
Jason L. Pacheco
B. Padmanabhan
29
44
0
26 Oct 2022
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
58
79
0
25 Oct 2022
Generalised Likelihood Ratio Testing Adversaries through the Differential Privacy Lens
Georgios Kaissis
Alexander Ziller
Stefan Kolek Martinez de Azagra
Daniel Rueckert
12
0
0
24 Oct 2022
Differentially Private Bootstrap: New Privacy Analysis and Inference Strategies
Zhanyu Wang
Guang Cheng
Jordan Awan
34
9
0
12 Oct 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
20
22
0
06 Oct 2022
Federated Boosted Decision Trees with Differential Privacy
Samuel Maddock
Graham Cormode
Tianhao Wang
Carsten Maple
S. Jha
FedML
34
29
0
06 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
66
50
0
02 Oct 2022
Differentially Private Optimization on Large Model at Small Cost
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
38
52
0
30 Sep 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
25
7
0
20 Aug 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
65
14
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
26
40
0
10 Jul 2022
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Ryuichi Ito
Seng Pei Liew
Tsubasa Takahashi
Yuya Sasaki
Makoto Onizuka
30
1
0
06 Jul 2022
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
Fei Wei
19
8
0
25 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
27
69
0
14 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
25
36
0
10 Jun 2022
Analytical Composition of Differential Privacy via the Edgeworth Accountant
Hua Wang
Sheng-yang Gao
Huanyu Zhang
Milan Shen
Weijie J. Su
FedML
36
21
0
09 Jun 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
350
0
13 Oct 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
36
131
0
03 Aug 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu-Xiang Wang
18
98
0
16 Jun 2021
1
2
Next