ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02346
  4. Cited By
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
v1v2 (latest)

Provably Strict Generalisation Benefit for Invariance in Kernel Methods

4 June 2021
Bryn Elesedy
ArXiv (abs)PDFHTML

Papers citing "Provably Strict Generalisation Benefit for Invariance in Kernel Methods"

25 / 25 papers shown
Title
Learning with Exact Invariances in Polynomial Time
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
Patrick Jaillet
213
0
0
27 Feb 2025
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
63
24
0
27 May 2023
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
96
90
0
25 Feb 2021
Provably Strict Generalisation Benefit for Equivariant Models
Provably Strict Generalisation Benefit for Equivariant Models
Bryn Elesedy
Sheheryar Zaidi
AI4CE
52
87
0
20 Feb 2021
Better, Faster Fermionic Neural Networks
Better, Faster Fermionic Neural Networks
J. Spencer
David Pfau
Aleksandar Botev
W. Foulkes
37
48
0
13 Nov 2020
Improving Transformation Invariance in Contrastive Representation
  Learning
Improving Transformation Invariance in Contrastive Representation Learning
Adam Foster
Rattana Pukdee
Tom Rainforth
96
23
0
19 Oct 2020
On the Benefits of Invariance in Neural Networks
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OODBDL
71
95
0
01 May 2020
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
  Descent
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
211
1,104
0
18 Feb 2019
On the Universality of Invariant Networks
On the Universality of Invariant Networks
Haggai Maron
Ethan Fetaya
Nimrod Segol
Y. Lipman
OOD
155
238
0
27 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
199
972
0
24 Jan 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLTAI4CE
215
314
0
05 Nov 2018
Set Transformer: A Framework for Attention-based Permutation-Invariant
  Neural Networks
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
Juho Lee
Yoonho Lee
Jungtaek Kim
Adam R. Kosiorek
Seungjin Choi
Yee Whye Teh
119
274
0
01 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,203
0
20 Jun 2018
Universal approximations of invariant maps by neural networks
Universal approximations of invariant maps by neural networks
Dmitry Yarotsky
124
213
0
26 Apr 2018
3D G-CNNs for Pulmonary Nodule Detection
3D G-CNNs for Pulmonary Nodule Detection
M. Winkels
Taco S. Cohen
MedIm3DPC
65
107
0
12 Apr 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
112
500
0
11 Feb 2018
Spherical CNNs
Spherical CNNs
Taco S. Cohen
Mario Geiger
Jonas Köhler
Max Welling
156
904
0
30 Jan 2018
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
408
2,464
0
10 Mar 2017
Equivariance Through Parameter-Sharing
Equivariance Through Parameter-Sharing
Siamak Ravanbakhsh
J. Schneider
Barnabás Póczós
86
258
0
27 Feb 2017
Local Group Invariant Representations via Orbit Embeddings
Local Group Invariant Representations via Orbit Embeddings
Anant Raj
Abhishek Kumar
Youssef Mroueh
Tom Fletcher
Bernhard Schölkopf
50
38
0
06 Dec 2016
Generalization Error of Invariant Classifiers
Generalization Error of Invariant Classifiers
Jure Sokolić
Raja Giryes
Guillermo Sapiro
M. Rodrigues
59
78
0
14 Oct 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
169
1,936
0
24 Feb 2016
Learning with Group Invariant Features: A Kernel Perspective
Learning with Group Invariant Features: A Kernel Perspective
Youssef Mroueh
S. Voinea
T. Poggio
VLM
46
35
0
08 Jun 2015
Unsupervised Learning of Invariant Representations in Hierarchical
  Architectures
Unsupervised Learning of Invariant Representations in Hierarchical Architectures
Fabio Anselmi
Joel Z Leibo
Lorenzo Rosasco
Jim Mutch
Andrea Tacchetti
T. Poggio
OCL
78
88
0
17 Nov 2013
Robustness and Generalization
Robustness and Generalization
Huan Xu
Shie Mannor
OOD
191
461
0
13 May 2010
1