ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01954
  4. Cited By
Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
  Benchmark
v1v2 (latest)

Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark

3 June 2021
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Alexander N. Filippov
Evgeny Burnaev
    OT
ArXiv (abs)PDFHTML

Papers citing "Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark"

38 / 38 papers shown
Title
Embedding Empirical Distributions for Computing Optimal Transport Maps
Embedding Empirical Distributions for Computing Optimal Transport Maps
Mingchen Jiang
Peng Xu
Xichen Ye
Xiaohui Chen
Yun Yang
Yifan Chen
OT
109
0
0
24 Apr 2025
Gradient Networks
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
114
0
0
28 Jan 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
94
2
0
01 Nov 2024
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Milena Gazdieva
Jaemoo Choi
Alexander Kolesov
Jaewoong Choi
Petr Mokrov
Alexander Korotin
OT
142
2
0
04 Oct 2024
Improving Neural Optimal Transport via Displacement Interpolation
Improving Neural Optimal Transport via Displacement Interpolation
Jaemoo Choi
Yongxin Chen
Jaewoong Choi
OT
82
2
0
03 Oct 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
96
2
0
05 Mar 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
89
2
0
02 Oct 2023
Computing high-dimensional optimal transport by flow neural networks
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
119
5
0
19 May 2023
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
62
48
0
02 Mar 2021
Learning High Dimensional Wasserstein Geodesics
Learning High Dimensional Wasserstein Geodesics
Shu Liu
Shaojun Ma
Yongxin Chen
H. Zha
Haomin Zhou
51
8
0
05 Feb 2021
Continuous Wasserstein-2 Barycenter Estimation without Minimax
  Optimization
Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization
Alexander Korotin
Lingxiao Li
Justin Solomon
Evgeny Burnaev
127
53
0
02 Feb 2021
Scalable Computations of Wasserstein Barycenter via Input Convex Neural
  Networks
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
JiaoJiao Fan
Amirhossein Taghvaei
Yongxin Chen
70
59
0
08 Jul 2020
Large-Scale Optimal Transport via Adversarial Training with
  Cycle-Consistency
Large-Scale Optimal Transport via Adversarial Training with Cycle-Consistency
Guansong Lu
Zhiming Zhou
Jian Shen
Cheng Chen
Weinan Zhang
Yong Yu
OT
41
13
0
14 Mar 2020
Multi-marginal Wasserstein GAN
Multi-marginal Wasserstein GAN
Jingyun Liang
Langyuan Mo
Yifan Zhang
Kui Jia
Chunhua Shen
Mingkui Tan
55
78
0
03 Nov 2019
How Well Do WGANs Estimate the Wasserstein Metric?
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
41
25
0
09 Oct 2019
On the estimation of the Wasserstein distance in generative models
On the estimation of the Wasserstein distance in generative models
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
54
9
0
02 Oct 2019
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
Evgeny Burnaev
GAN
196
109
0
28 Sep 2019
Optimal transport mapping via input convex neural networks
Optimal transport mapping via input convex neural networks
Ashok Vardhan Makkuva
Amirhossein Taghvaei
Sewoong Oh
Jason D. Lee
OT
57
201
0
28 Aug 2019
Adversarial Computation of Optimal Transport Maps
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She
Amjad Almahairi
Sai Rajeswar
Aaron Courville
GANOT
50
21
0
24 Jun 2019
A gradual, semi-discrete approach to generative network training via
  explicit Wasserstein minimization
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GANOT
43
17
0
08 Jun 2019
On Scalable and Efficient Computation of Large Scale Optimal Transport
On Scalable and Efficient Computation of Large Scale Optimal Transport
Yujia Xie
Minshuo Chen
Haoming Jiang
T. Zhao
H. Zha
OT
64
44
0
01 May 2019
2-Wasserstein Approximation via Restricted Convex Potentials with
  Application to Improved Training for GANs
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
63
44
0
19 Feb 2019
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
Anton Mallasto
J. Frellsen
Wouter Boomsma
Aasa Feragen
44
15
0
10 Feb 2019
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
224
2,150
0
01 Mar 2018
On the Convergence and Robustness of Training GANs with Regularized
  Optimal Transport
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
Jason D. Lee
GAN
78
139
0
22 Feb 2018
Wasserstein Divergence for GANs
Wasserstein Divergence for GANs
Jiqing Wu
Zhiwu Huang
Janine Thoma
Dinesh Acharya
Luc Van Gool
75
139
0
04 Dec 2017
Are GANs Created Equal? A Large-Scale Study
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
80
1,013
0
28 Nov 2017
Large-Scale Optimal Transport and Mapping Estimation
Large-Scale Optimal Transport and Mapping Estimation
Vivien Seguy
B. Damodaran
Rémi Flamary
Nicolas Courty
Antoine Rolet
Mathieu Blondel
OT
68
249
0
07 Nov 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
82
344
0
30 May 2017
Continuously Differentiable Exponential Linear Units
Continuously Differentiable Exponential Linear Units
Jonathan T. Barron
56
141
0
24 Apr 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,560
0
31 Mar 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
174
4,827
0
26 Jan 2017
DOTmark - A Benchmark for Discrete Optimal Transport
DOTmark - A Benchmark for Discrete Optimal Transport
Jörn Schrieber
Dominic Schuhmacher
C. Gottschlich
OT
52
41
0
11 Oct 2016
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
280
624
0
22 Sep 2016
Stochastic Optimization for Large-scale Optimal Transport
Stochastic Optimization for Large-scale Optimal Transport
Aude Genevay
Marco Cuturi
Gabriel Peyré
Francis R. Bach
OT
77
468
0
27 May 2016
A fixed-point approach to barycenters in Wasserstein space
A fixed-point approach to barycenters in Wasserstein space
P. C. Álvarez-Esteban
E. del Barrio
J. A. Cuesta-Albertos
Carlos Matrán
52
193
0
17 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,426
0
28 Nov 2014
1