Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.01954
Cited By
v1
v2 (latest)
Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark
3 June 2021
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Alexander N. Filippov
Evgeny Burnaev
OT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark"
38 / 38 papers shown
Title
Embedding Empirical Distributions for Computing Optimal Transport Maps
Mingchen Jiang
Peng Xu
Xichen Ye
Xiaohui Chen
Yun Yang
Yifan Chen
OT
109
0
0
24 Apr 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
114
0
0
28 Jan 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
92
2
0
01 Nov 2024
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Milena Gazdieva
Jaemoo Choi
Alexander Kolesov
Jaewoong Choi
Petr Mokrov
Alexander Korotin
OT
142
2
0
04 Oct 2024
Improving Neural Optimal Transport via Displacement Interpolation
Jaemoo Choi
Yongxin Chen
Jaewoong Choi
OT
82
2
0
03 Oct 2024
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
93
2
0
05 Mar 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
89
2
0
02 Oct 2023
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
119
5
0
19 May 2023
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
62
48
0
02 Mar 2021
Learning High Dimensional Wasserstein Geodesics
Shu Liu
Shaojun Ma
Yongxin Chen
H. Zha
Haomin Zhou
51
8
0
05 Feb 2021
Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization
Alexander Korotin
Lingxiao Li
Justin Solomon
Evgeny Burnaev
127
53
0
02 Feb 2021
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
JiaoJiao Fan
Amirhossein Taghvaei
Yongxin Chen
70
59
0
08 Jul 2020
Large-Scale Optimal Transport via Adversarial Training with Cycle-Consistency
Guansong Lu
Zhiming Zhou
Jian Shen
Cheng Chen
Weinan Zhang
Yong Yu
OT
39
13
0
14 Mar 2020
Multi-marginal Wasserstein GAN
Jingyun Liang
Langyuan Mo
Yifan Zhang
Kui Jia
Chunhua Shen
Mingkui Tan
55
78
0
03 Nov 2019
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
41
25
0
09 Oct 2019
On the estimation of the Wasserstein distance in generative models
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
54
9
0
02 Oct 2019
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
Evgeny Burnaev
GAN
196
108
0
28 Sep 2019
Optimal transport mapping via input convex neural networks
Ashok Vardhan Makkuva
Amirhossein Taghvaei
Sewoong Oh
Jason D. Lee
OT
57
201
0
28 Aug 2019
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She
Amjad Almahairi
Sai Rajeswar
Aaron Courville
GAN
OT
50
21
0
24 Jun 2019
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GAN
OT
43
17
0
08 Jun 2019
On Scalable and Efficient Computation of Large Scale Optimal Transport
Yujia Xie
Minshuo Chen
Haoming Jiang
T. Zhao
H. Zha
OT
64
44
0
01 May 2019
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
63
43
0
19 Feb 2019
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
Anton Mallasto
J. Frellsen
Wouter Boomsma
Aasa Feragen
44
15
0
10 Feb 2019
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
224
2,149
0
01 Mar 2018
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
Jason D. Lee
GAN
78
139
0
22 Feb 2018
Wasserstein Divergence for GANs
Jiqing Wu
Zhiwu Huang
Janine Thoma
Dinesh Acharya
Luc Van Gool
75
139
0
04 Dec 2017
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
77
1,013
0
28 Nov 2017
Large-Scale Optimal Transport and Mapping Estimation
Vivien Seguy
B. Damodaran
Rémi Flamary
Nicolas Courty
Antoine Rolet
Mathieu Blondel
OT
68
249
0
07 Nov 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
79
344
0
30 May 2017
Continuously Differentiable Exponential Linear Units
Jonathan T. Barron
56
141
0
24 Apr 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,558
0
31 Mar 2017
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
172
4,827
0
26 Jan 2017
DOTmark - A Benchmark for Discrete Optimal Transport
Jörn Schrieber
Dominic Schuhmacher
C. Gottschlich
OT
52
41
0
11 Oct 2016
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
280
623
0
22 Sep 2016
Stochastic Optimization for Large-scale Optimal Transport
Aude Genevay
Marco Cuturi
Gabriel Peyré
Francis R. Bach
OT
75
468
0
27 May 2016
A fixed-point approach to barycenters in Wasserstein space
P. C. Álvarez-Esteban
E. del Barrio
J. A. Cuesta-Albertos
Carlos Matrán
52
193
0
17 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,260
0
22 Dec 2014
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,424
0
28 Nov 2014
1